March 27, 2018

Ms. Jennifer Marsee
Unit Supervisor
Regional Air Pollution Control Agency
117 South Main Street
Dayton, OH 45422

Re: DFFO Order No. 9 Ambient Air Monitoring – March 15-16 2018
Stony Hollow Landfill
Facility ID No. 08-57-04-3008

Dear Ms. Marsee:

Stony Hollow Landfill, Inc. (Stony Hollow) contracted with LJB, Inc. (LJB) to perform the ambient air monitoring as required by the Director’s Final Findings and Orders, dated May 3, 2017. DFFO Order No. 9 requires air monitoring on the 1 in 6-day schedule beginning seven (7) days following the installation of LFG wells within the five (5) acre area (a.k.a. next phase of the proposed temporary cap area). LFG well installation in this area was completed on June 27, 2017 and 1 in 6-day monitoring began on July 6, 2017. The 24-hour ambient air sampling was performed between March 15-16, 2018 and ALS Environmental performed the USEPA Method TO-15, ASTM D 5504-12 and OSHA 1007.

Please find attached to this submittal letter the LJB ambient air monitoring report, which includes the available analytical results. Per a review of the analytical results, the measured concentrations within the air samples were below the laboratory reporting limits or the NIOSH RELs and ATSDR Chronic MRLs.

If you have any questions, please contact the undersigned at (937) 356-6204.

Sincerely,

Peter Lucas, P.E.
District Engineer

cc: Russell Brown, Michelle Ackenhausen - Ohio EPA
Stony Hollow files
March 27, 2018

Mr. Peter Lucas
Waste Management – Stony Hollow Landfill
2460 South Gettysburg Avenue
Dayton, Ohio 45417

Re: March 15, 2018 ambient air sampling at Stony Hollow Landfill

Dear Mr. Lucas:

On March 15 through March 16, 2018 LJB Inc. collected two 24-hour ambient air samples at the Waste Management Stony Hollow Landfill. The samples included SHAA-N-60, collected from inside the northeast fence line of the landfill, and SHAA-S-60, collected from inside the southeast fence line of the landfill. One Summa canister and one UMEEx 100 Passive Sampler were collected at each location. Attached is a map of the sample locations designated by Waste Management in accordance with the May 3, 2017 Ohio EPA Director’s Final Findings and Orders for Stony Hollow Landfill and the Air Monitor Siting Study prepared by SCS Engineers for Stony Hollow Landfill. Table 1 contains sample equipment and interval details.

<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>START DATE/TIME</th>
<th>END DATE/TIME</th>
<th>START PRESSURE</th>
<th>END PRESSURE</th>
<th>CANISTER NO.</th>
<th>CONTROLLER NO.</th>
<th>UMEEx 100 SAMPLER NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAA-N-60</td>
<td>3/15/2018 09:55</td>
<td>3/16/2018 09:55</td>
<td>-28.5” Hg</td>
<td>-6” Hg</td>
<td>AS04038</td>
<td>SFC00211</td>
<td>A273224</td>
</tr>
<tr>
<td>SHAA-S-60</td>
<td>3/15/2018 10:07</td>
<td>3/16/2018 10:07</td>
<td>-30” (+) Hg</td>
<td>-6” Hg</td>
<td>AS01273</td>
<td>SFC00132</td>
<td>A273238</td>
</tr>
</tbody>
</table>

Weather conditions reported for the sample period by the weather station located at Stony Hollow Landfill are shown in the attached graphs.

The completed UMEEx 100 samplers were transported by courier from the LJB offices to ALS Environmental’s Cincinnati, Ohio laboratory on March 16, 2018 and were analyzed by OSHA Method 1007 on March 20, 2018 per the three-day turnaround time previously arranged. The Summa canisters were transported by Federal Express second-day delivery, arriving at ALS Environmental’s Simi Valley, California Laboratory on March 19, 2018, and were analyzed by EPA Method TO-15 on March 20, 2018 and ASTM Standard Test Method D5504-12 on March 19, 2018. Table 2 provides the summarized sample results.

The EPA Method TO-15 found that 2-butane, acetone, benzene, carbon tetrachloride, chloromethane, dichlorodifluoromethane, ethyl acetate, ethylbenzene, Freon 113, hexane, m,p-xylene, methylene
chloride, tetrahydrofuran, toluene and trichlorofluoromethane were detected above laboratory reporting limits; concentrations of all were well below the NIOSH RELs and ATSDR chronic MRLs for these compounds. Propene was also detected above laboratory reporting limits; however, no NIOSH REL or ATSDR chronic MRL has been established for the inhalation route (gaseous air) of this compound. Note that the propene result from sample SHAA-S-60 was flagged with an “M1”, indicating that propene co-eluted with a second compound during analysis; therefore, the reported concentration may be an overestimate.

The ASTM Standard Test Method D5504-12 did not detect any compounds above the laboratory reporting limits.

The OSHA Method 1907 detected acetaldehyde and butyraldehyde above laboratory reporting limits. No NIOSH REL or ATSDR chronic MRL has been established for the inhalation route (gaseous air) of this compound.

TABLE 2

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SHAA-N-60, ppbv</th>
<th>SHAA-S-60, ppbv</th>
<th>NIOSH REL, ppbv</th>
<th>ATSDR Chronic MRL, ppbv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><0.13</td>
<td><0.12</td>
<td>350,000</td>
<td>700</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><0.10</td>
<td><0.099</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><0.13</td>
<td><0.12</td>
<td>10,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><0.17</td>
<td><0.17</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td><0.18</td>
<td><0.17</td>
<td>200,000</td>
<td>20</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td><0.095</td>
<td><0.092</td>
<td>5,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td><0.14</td>
<td><0.14</td>
<td>25,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><0.092</td>
<td><0.089</td>
<td>45</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><0.12</td>
<td><0.11</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><0.17</td>
<td><0.17</td>
<td>1,000</td>
<td>600</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td><0.15</td>
<td><0.15</td>
<td>75,000</td>
<td>7</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td><0.14</td>
<td><0.14</td>
<td>25,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td><0.32</td>
<td><0.31</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><0.12</td>
<td><0.11</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><0.12</td>
<td><0.11</td>
<td>50,000</td>
<td>10</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><0.20</td>
<td><0.19</td>
<td>NA</td>
<td>30</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>0.19 (J)</td>
<td>0.26 (J)</td>
<td>200</td>
<td>NA</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><0.17</td>
<td><0.17</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>2-Propanol</td>
<td><2.9</td>
<td><2.8</td>
<td>400,000</td>
<td>NA</td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td><0.14</td>
<td><0.14</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>SHAA-N-60<sup>1</sup>, ppbv</td>
<td>SHAA-S-60<sup>1</sup>, ppbv</td>
<td>NIOSH REL<sup>2</sup>, ppbv</td>
<td>ATSDR Chronic MRL<sup>2</sup>, ppbv</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td><0.17</td>
<td><0.17</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>Acetone</td>
<td>1.5 (J)</td>
<td>1.6 (J)</td>
<td>250,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.10 (J)</td>
<td>0.50</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td><0.27</td>
<td><0.26</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><0.11</td>
<td><0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bromoform</td>
<td><0.068</td>
<td><0.066</td>
<td>500</td>
<td>NA</td>
</tr>
<tr>
<td>Bromomethane</td>
<td><0.18</td>
<td><0.18</td>
<td>20,000</td>
<td>5</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><2.3</td>
<td><2.2</td>
<td>1,000</td>
<td>300</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.067 (J)</td>
<td>0.069 (J)</td>
<td>2,000</td>
<td>30</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><0.15</td>
<td><0.15</td>
<td>75,000</td>
<td>NA</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><0.27</td>
<td><0.26</td>
<td>1,000,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Chloroform</td>
<td><0.14</td>
<td><0.14</td>
<td>2,000</td>
<td>20</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.32 (J)</td>
<td>0.31 (J)</td>
<td>100,000</td>
<td>50</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td><0.18</td>
<td><0.17</td>
<td>200,000</td>
<td>NA</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><0.16</td>
<td><0.15</td>
<td>1,000</td>
<td>7</td>
</tr>
<tr>
<td>Cumene</td>
<td><0.14</td>
<td><0.14</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td><0.41</td>
<td><0.40</td>
<td>300,000</td>
<td>NA</td>
</tr>
<tr>
<td>Diisomethylchloromethane</td>
<td><0.083</td>
<td><0.080</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.47</td>
<td>0.48</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>1.3</td>
<td>1.8</td>
<td>400,000</td>
<td>NA</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><0.16</td>
<td>0.072 (J)</td>
<td>100,000</td>
<td>60</td>
</tr>
<tr>
<td>Freon 113 (Trichlorotrifluoro)</td>
<td>0.063 (J)</td>
<td>0.062 (J)</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Freon 114 (1,2-Dichloro-1,1,2,2-tetrafluoro)</td>
<td><0.10</td>
<td><0.097</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Heptane (n-Heptane)</td>
<td><0.17</td>
<td><0.17</td>
<td>85,000</td>
<td>NA</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td><0.066</td>
<td><0.064</td>
<td>20</td>
<td>NA</td>
</tr>
<tr>
<td>Hexane (n-Hexane)</td>
<td><0.20</td>
<td>0.080 (J)</td>
<td>50,000</td>
<td>600</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td><0.32</td>
<td>0.14 (J)</td>
<td>100,000</td>
<td>50</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>0.13 (J)</td>
<td>0.12 (J)</td>
<td>25,000</td>
<td>300</td>
</tr>
<tr>
<td>MTBE (Methyl tert-butyl ether)</td>
<td><0.20</td>
<td><0.19</td>
<td>2,000</td>
<td>NA</td>
</tr>
<tr>
<td>Naphthalene</td>
<td><0.13</td>
<td><0.13</td>
<td>10,000</td>
<td>NA</td>
</tr>
<tr>
<td>o-Xylene</td>
<td><0.16</td>
<td><0.16</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Propene</td>
<td><0.41</td>
<td>0.58 (M1)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Styrene</td>
<td><0.17</td>
<td><0.16</td>
<td>50,000</td>
<td>200</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td><0.10</td>
<td><0.10</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td><0.24</td>
<td>0.22 (J)</td>
<td>200,000</td>
<td>NA</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>SHAA-N-69, ppb</td>
<td>SHAA-S-69, ppb</td>
<td>NIOSH REL, ppb</td>
<td>ATSDR Chronic MRL, ppb</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.11 (J)</td>
<td>0.30</td>
<td>100,000</td>
<td>1,000</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td><0.18</td>
<td><0.17</td>
<td>200,000</td>
<td>200</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><0.16</td>
<td><0.15</td>
<td>1,000</td>
<td>7</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td><0.13</td>
<td><0.13</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.23</td>
<td>0.25</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><2.0</td>
<td><1.9</td>
<td>4,000</td>
<td>10</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td><0.28</td>
<td><0.27</td>
<td>1,000</td>
<td>30</td>
</tr>
</tbody>
</table>

ASTM D5504-12 (Summa canister)

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SHAA-N-69, ppb</th>
<th>SHAA-S-69, ppb</th>
<th>NIOSH REL, ppb</th>
<th>ATSDR Chronic MRL, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5-Dimethylthiophene</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2-Ethylthiophene</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3-Methylthiophene</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><3.5</td>
<td><3.4</td>
<td>1,000</td>
<td>300</td>
</tr>
<tr>
<td>Carbonyl sulfide</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diethyl disulfide</td>
<td><3.5</td>
<td><3.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td><3.5</td>
<td><3.4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl methyl sulfide</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td><7.1</td>
<td><6.8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Isobutyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Isopropyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>n-Butyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>n-Propyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>tert-Butyl mercaptan</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thiophene</td>
<td><7.1</td>
<td><6.8</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

OSHA 1007 (UMEx 100 sampler)

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SHAA-N-69, ppb</th>
<th>SHAA-S-69, ppb</th>
<th>NIOSH REL, ppb</th>
<th>ATSDR Chronic MRL, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>4.4</td>
<td><3.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td><2.3</td>
<td><2.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>8.1</td>
<td>5.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td><5.0</td>
<td><5.0</td>
<td>2,000</td>
<td>NA</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td><4.0</td>
<td><4.0</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td><3.5</td>
<td><3.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>SHAA-N-60, ppbv</td>
<td>SHAA-S-60, ppbv</td>
<td>NIOSH REL, ppbv</td>
<td>ATSDR Chronic MRL, ppbv</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td><4.2</td>
<td><4.2</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

(1) Air sample duration is over a 24 hour period
(2) NIOSH REL is based on the time-weighted average concentration for an 8-10 hour workday during a 40 hour work week
(3) ATSDR MRLs are derived for three time periods: acute (1-14 days), intermediate (14-364 days) and chronic (>365 days); the chronic ATSDR MRLs are provided within this Table
J = The result is an estimated concentration that is less than the method reporting limit but greater than the method detection limit
M1 = Matrix interference due to coelution with a non-target compound; results may be biased high
NA = Limit not established for inhalation route (gaseous air samples)

All ALS Environmental laboratory reports and chain of custody forms are attached. Please let me know if you have any questions.

Sincerely,

LJB Inc.

Alexandra Zelies
Environmental Scientist
LABORATORY REPORT

March 22, 2018

Peter Lucas
Waste Management-Stony Hollow Landfill
2460 S Gettysburg Ave.
Dayton, OH 45417

RE: Stony Hollow Landfill

Dear Peter:

Enclosed are the results of the samples submitted to our laboratory on March 19, 2018. For your reference, these analyses have been assigned our service request number P1801339.

All analyses were performed according to our laboratory’s NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Kate Kaneko
Project Manager
CASE NARRATIVE

The samples were received intact under chain of custody on March 19, 2018 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Sulfur Analysis

The samples were analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory's NELAP scope of accreditation, however it is not part of the DoD-ELAP accreditation.

Volatile Organic Compound Analysis

The samples were also analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The containers were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. For projects requiring DoD QSM 5.1 compliance canisters were cleaned to <1/2 the MRL. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.
CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

<table>
<thead>
<tr>
<th>Agency</th>
<th>Web Site</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida DOH (NELAP)</td>
<td>http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm</td>
<td>E871020</td>
</tr>
<tr>
<td>Louisiana DEQ (NELAP)</td>
<td>http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx</td>
<td>05071</td>
</tr>
<tr>
<td>Minnesota DOH (NELAP)</td>
<td>http://www.health.state.mn.us/accreditation</td>
<td>1347317</td>
</tr>
<tr>
<td>New Jersey DEP (NELAP)</td>
<td>http://www.nj.gov/dep/oqa/</td>
<td>CA009</td>
</tr>
<tr>
<td>New York DOH (NELAP)</td>
<td>http://www.wadsworth.org/labcert/elap/elap.html</td>
<td>11221</td>
</tr>
<tr>
<td>Oregon PHD (NELAP)</td>
<td>http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx</td>
<td>4068-005</td>
</tr>
<tr>
<td>Pennsylvania DEP</td>
<td>http://www.depweb.state.pa.us/labs</td>
<td>68-03307 (Registration)</td>
</tr>
<tr>
<td>PJLA (DoD ELAP)</td>
<td>http://www.pjlabs.com/search-accredited-labs</td>
<td>65818 (Testing)</td>
</tr>
<tr>
<td>Texas CEQ (NELAP)</td>
<td>http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html</td>
<td>TI04704413-17-8</td>
</tr>
<tr>
<td>Utah DOH (NELAP)</td>
<td>http://health.utah.gov/lab/environmental-lab-certification/</td>
<td>CA01627201-7-8</td>
</tr>
</tbody>
</table>

Analyses were performed according to our laboratory’s NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body’s website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.
ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

Client: Waste Management-Stony Hollow Landfill
Project ID: Stony Hollow Landfill
Date Received: 3/19/2018
Time Received: 09:15

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Lab Code</th>
<th>Matrix</th>
<th>Date Collected</th>
<th>Time Collected</th>
<th>Container ID</th>
<th>Pf (psig)</th>
<th>Pf (psig)</th>
<th>TO-15</th>
<th>VOC Cams</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAA-N-60</td>
<td>P1801339-001</td>
<td>Air</td>
<td>3/16/2018</td>
<td>09:55</td>
<td>AS00438</td>
<td>-1.73</td>
<td>3.54</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHAA-S-60</td>
<td>P1801339-002</td>
<td>Air</td>
<td>3/16/2018</td>
<td>10:07</td>
<td>AS01273</td>
<td>-1.25</td>
<td>3.61</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Air - Chain of Custody Record & Analytical Service Request

Requested Turnaround Time in Business Days (Surcharge) please circle:
- 1 Day (100%)
- 2 Day (75%)
- 3 Day (50%)
- 4 Day (35%)
- 5 Day (25%)
- 10 Day Standard

ALS Project No: 71601339

<table>
<thead>
<tr>
<th>Company Name & Address (Reporting Information)</th>
<th>ALS Contact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LJB Inc c/o Waste Management-Stony Hollow</td>
<td></td>
</tr>
<tr>
<td>2800 Newman Drive</td>
<td></td>
</tr>
<tr>
<td>Morrisburg, OH 45342</td>
<td></td>
</tr>
</tbody>
</table>

Project Manager: Alex Zeles

Project Name: Stony Hollow Landfill

P.O. # / Billing Information: Per Porrar Lucano/WM

Sampler (Print & Sign):

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Laboratory ID Number</th>
<th>Date Collected</th>
<th>Time Collected</th>
<th>Canister ID [Bar code # - AC, SC, etc.]</th>
<th>Flow Controller ID [Bar code # - FC #]</th>
<th>Canister Start Pressure [Hg]</th>
<th>Canister End Pressure [g/sig]</th>
<th>Sample Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA4 - N - LDC</td>
<td>1</td>
<td>1/14/18</td>
<td>012:55</td>
<td>A500486</td>
<td>SC0024H4-network -285" -L"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA4 - S - LDC</td>
<td>2</td>
<td></td>
<td>11/14/18</td>
<td>A501288</td>
<td>SC00248 -306" -L"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Tier Levels - please select:

<table>
<thead>
<tr>
<th>Tier I (Results)</th>
<th>Tier II (Results + GC & Calibration Summaries)</th>
<th>Tier IV (Data Validation Package)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results (Default if not specified)</td>
<td>X</td>
<td>10% Surcharge</td>
</tr>
</tbody>
</table>

EDD required Yes / No:
- Yes

Type:
- INTACT

Chain of Custody Seal (Circle):
- BROKEN
- ABSENT

Project Requirements:
- MRLS, QAPP

Failing Level (Signature):

- [Signature]

Date: 1/14/18

Time: 11:10 am

Received by: [Signature]

Date: 1/14/18

Time: 11:10 am

Cooler / Blank Temperature: °C.
Sample(s) received on: 3/19/18 Date opened: 3/19/18 by: E.PEREZ

Note: This form is used for all samples received by ALS. The use of this form for custody seals is strictly meant to indicate presence/absence and not as an indication of compliance or nonconformity. Thermal preservation and pH will only be evaluated either at the request of the client and/or as required by the method/SOP.

1. Were sample containers properly marked with client sample ID?
 - Yes No N/A

2. Did sample containers arrive in good condition?
 - Yes No N/A

3. Were chain-of-custody papers used and filled out?
 - Yes No N/A

4. Did sample container labels and/or tags agree with custody papers?
 - Yes No N/A

5. Was sample volume received adequate for analysis?
 - Yes No N/A

6. Are samples within specified holding times?
 - Yes No N/A

7. Was proper temperature (thermal preservation) of cooler at receipt adhered to?
 - Yes No N/A

8. Were custody seals on outside of cooler/Box/Container?
 - Yes No N/A

 Location of seal(s)? Sealing Boxes Sealing Lid?
 - Yes No N/A

 Were signature and date included?
 - Yes No N/A

 Were seals intact?
 - Yes No N/A

9. Do containers have appropriate preservation, according to method/SOP or Client specified information?
 - Yes No N/A

 Is there a client indication that the submitted samples are pH preserved?
 - Yes No N/A

 Were VOA vials checked for presence/absence of air bubbles?
 - Yes No N/A

 Does the client/method/SOP require that the analyst check the sample pH and if necessary alter it?
 - Yes No N/A

10. Tubes:
 - Are the tubes capped and intact?
 - Yes No N/A

11. Badges:
 - Are the badges properly capped and intact?
 - Yes No N/A

 Are dual bed badges separated and individually capped and intact?
 - Yes No N/A

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Container Description</th>
<th>Required pH *</th>
<th>Received pH</th>
<th>Adjusted pH</th>
<th>VOA Headspace (Presence/Absence)</th>
<th>Receipt / Preservation Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1801339-001.01</td>
<td>6.0 L Silonite Can</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1801339-002.01</td>
<td>6.0 L Silonite Can</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH=2); RSK - CO₂, (pH 5-8); Sulfur (pH=4)
Results of Analysis

Client:
Waste Management-Stony Hollow Landfill

Client Sample ID:
SHAA-N-60

Client Project ID:
Stony Hollow Landfill

Test Code:
ASTM D 5504-12

Instrument ID:
Agilent 7890A/GC22/SCD

Analyst:
Mike Conejo

Sample Type:
6.0 L Silonite Canister

Test Notes:

Container ID:
AS00438

Initial Pressure (psig):
-1.73

Final Pressure (psig):
3.54

Date Collected:
3/16/18

Time Collected:
09:55

Date Received:
3/19/18

Time Analyzed:
10:53

Volume(s) Analyzed:
1.0 ml(s)

Container Dilution Factor:
1.41

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>9.8</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>14</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulfide</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>11</td>
<td>ND</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>22</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>26</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>22</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>22</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>24</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>26</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>26</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>107-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>26</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>14</td>
<td>ND</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>28</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>32</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>32</td>
<td>ND</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-60
Client Project ID: Stony Hollow Landfill

ALS Project ID: P1801339
ALS Sample ID: P1801339-002

Test Code: ASTM D 5504-12
Instrument ID: Agilent 7890A/GC22/SCD
Analyst: Mike Conejo
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS01273

Date Collected: 3/16/18
Time Collected: 10:07
Date Received: 3/19/18
Date Analyzed: 3/19/18
Time Analyzed: 11:24
Volume(s) Analyzed: 1.0 ml(s)

Initial Pressure (psig): -1.25
Final Pressure (psig): 3.61

Container Dilution Factor: 1.36

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>9.5</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulfide</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>11</td>
<td>ND</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>109-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>27</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>31</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>31</td>
<td>ND</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>3.4</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P180319-MB

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result $\mu g/m^3$</th>
<th>MRL $\mu g/m^3$</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>7.0</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>12</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>9.8</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulfide</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>7.8</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>109-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>9.6</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>12</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P180319-LCS

Test Code: ASTM D 5504-12
Instrument ID: Agilent 7890A/GC22/SCD
Analyst: Mike Conejo
Sample Type: 6.0 L Silonite Canister
Date Collected: NA
Date Received: NA
Date Analyzed: 3/19/18
Volume(s) Analyzed: NA mL(s)

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount ppbV</th>
<th>Result ppbV</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>1,000</td>
<td>989</td>
<td>99</td>
<td>81-141</td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>1,000</td>
<td>1,040</td>
<td>104</td>
<td>81-147</td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>1,000</td>
<td>1,020</td>
<td>102</td>
<td>80-144</td>
</tr>
</tbody>
</table>
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS00438

Initial Pressure (psig): -1.73
Final Pressure (psig): 3.54

Container Dilution Factor: 1.41

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.41</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>2.3</td>
<td>0.71</td>
<td>0.24</td>
<td>0.47</td>
<td>0.14</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>0.66</td>
<td>0.71</td>
<td>0.21</td>
<td>0.32</td>
<td>0.34</td>
<td>0.10</td>
<td>J</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>0.71</td>
<td>0.27</td>
<td>ND</td>
<td>0.10</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.28</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>0.71</td>
<td>0.31</td>
<td>ND</td>
<td>0.32</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.27</td>
<td>ND</td>
<td>0.18</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.27</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>3.7</td>
<td>7.1</td>
<td>1.1</td>
<td>1.5</td>
<td>3.0</td>
<td>0.46</td>
<td>J</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>1.3</td>
<td>0.71</td>
<td>0.24</td>
<td>0.23</td>
<td>0.13</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>ND</td>
<td>7.1</td>
<td>0.59</td>
<td>ND</td>
<td>2.9</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.18</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>0.45</td>
<td>0.71</td>
<td>0.24</td>
<td>0.13</td>
<td>0.20</td>
<td>0.069</td>
<td>J</td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>0.49</td>
<td>0.71</td>
<td>0.24</td>
<td>0.063</td>
<td>0.092</td>
<td>0.031</td>
<td>J</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>7.1</td>
<td>0.21</td>
<td>ND</td>
<td>2.3</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.27</td>
<td>ND</td>
<td>0.18</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.20</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>7.1</td>
<td>0.92</td>
<td>ND</td>
<td>2.0</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>0.56</td>
<td>7.1</td>
<td>0.30</td>
<td>0.19</td>
<td>2.4</td>
<td>0.10</td>
<td>J</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.18</td>
<td>0.057</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Date Collected: 3/16/18
Test Code: Tekmar AUTOCAN/Agilent 5973 inert/6890N/MS9
Date Received: 3/19/18
Analyzer: Lusine Hakobyan
Date Analyzed: 3/20/18
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:
Container ID: AS00438

Initial Pressure (psig): -1.73
Final Pressure (psig): 3.54

Container Dilution Factor: 1.41

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result $\mu g/m^3$</th>
<th>MRL $\mu g/m^3$</th>
<th>MDL $\mu g/m^3$</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>4.8</td>
<td>1.4</td>
<td>0.49</td>
<td>1.3</td>
<td>0.39</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.20</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.14</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>0.71</td>
<td>0.28</td>
<td>ND</td>
<td>0.24</td>
<td>0.096</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.13</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>0.33</td>
<td>0.71</td>
<td>0.23</td>
<td>0.10</td>
<td>0.22</td>
<td>0.071</td>
<td>J</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.42</td>
<td>0.71</td>
<td>0.21</td>
<td>0.067</td>
<td>0.11</td>
<td>0.034</td>
<td>J</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.4</td>
<td>0.41</td>
<td>ND</td>
<td>0.41</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.15</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.11</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.13</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.20</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.71</td>
<td>0.24</td>
<td>ND</td>
<td>0.17</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.16</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.16</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.13</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>0.43</td>
<td>0.71</td>
<td>0.24</td>
<td>0.11</td>
<td>0.19</td>
<td>0.064</td>
<td>J</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.055</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P1801339-001
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS00438
Date Collected: 3/16/18
Date Received: 3/19/18
Date Analyzed: 3/20/18
Volume(s) Analyzed: 1.00 Liter(s)
Initial Pressure (psig): -1.73
Final Pressure (psig): 3.54

Container Dilution Factor: 1.41

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result (\mu g/m^3)</th>
<th>MRL (\mu g/m^3)</th>
<th>MDL (\mu g/m^3)</th>
<th>Result (ppbV)</th>
<th>MRL (ppbV)</th>
<th>MDL (ppbV)</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.083</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.092</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.10</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.15</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.16</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>ND</td>
<td>1.4</td>
<td>0.42</td>
<td>ND</td>
<td>0.32</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.068</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.17</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.16</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.10</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.14</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.14</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.14</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.14</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.4</td>
<td>0.16</td>
<td>ND</td>
<td>0.27</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.12</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.21</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.71</td>
<td>0.23</td>
<td>ND</td>
<td>0.095</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>0.71</td>
<td>0.25</td>
<td>ND</td>
<td>0.13</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.71</td>
<td>0.20</td>
<td>ND</td>
<td>0.066</td>
<td>0.019</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS01273
Date Collected: 3/16/18
Date Received: 3/19/18
Date Analyzed: 3/20/18
Volume(s) Analyzed: 1.00 Liter(s)
Initial Pressure (psig): -1.25
Final Pressure (psig): 3.61
Container Dilution Factor: 1.36

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m^3</th>
<th>MRL µg/m^3</th>
<th>MDL µg/m^3</th>
<th>Result ppb/V</th>
<th>MRL ppb/V</th>
<th>MDL ppb/V</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>0.99</td>
<td>0.68</td>
<td>0.19</td>
<td>0.58</td>
<td>0.40</td>
<td>0.11</td>
<td>M1</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>2.4</td>
<td>0.68</td>
<td>0.23</td>
<td>0.48</td>
<td>0.14</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>0.65</td>
<td>0.68</td>
<td>0.20</td>
<td>0.31</td>
<td>0.33</td>
<td>0.099</td>
<td>J</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>0.68</td>
<td>0.26</td>
<td>ND</td>
<td>0.097</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.27</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>0.68</td>
<td>0.30</td>
<td>ND</td>
<td>0.31</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.26</td>
<td>ND</td>
<td>0.18</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.26</td>
<td>0.088</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>3.9</td>
<td>6.8</td>
<td>1.0</td>
<td>1.6</td>
<td>2.9</td>
<td>0.44</td>
<td>J</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichloroethylene (CFC 11)</td>
<td>1.4</td>
<td>0.68</td>
<td>0.23</td>
<td>0.25</td>
<td>0.12</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>ND</td>
<td>6.8</td>
<td>0.57</td>
<td>ND</td>
<td>2.8</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>75-65-1</td>
<td>Methylene Chloride</td>
<td>0.43</td>
<td>0.68</td>
<td>0.23</td>
<td>0.12</td>
<td>0.20</td>
<td>0.067</td>
<td>J</td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>0.48</td>
<td>0.68</td>
<td>0.23</td>
<td>0.062</td>
<td>0.089</td>
<td>0.030</td>
<td>J</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>6.8</td>
<td>0.20</td>
<td>ND</td>
<td>2.2</td>
<td>0.066</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.68</td>
<td>0.26</td>
<td>ND</td>
<td>0.17</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.19</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>6.8</td>
<td>0.88</td>
<td>ND</td>
<td>1.9</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>0.77</td>
<td>6.8</td>
<td>0.29</td>
<td>0.26</td>
<td>2.3</td>
<td>0.097</td>
<td>J</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.055</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instruments ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyzer: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS01273
Date Collected: 3/16/18
Date Received: 3/19/18
Date Analyzed: 3/20/18
Volume(s) Analyzed: 1.00 Liter(s)
Initial Pressure (psig): -1.25
Final Pressure (psig): 3.61
Container Dilution Factor: 1.36

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result $\mu g/m^3$</th>
<th>MRL $\mu g/m^3$</th>
<th>MDL $\mu g/m^3$</th>
<th>Result $ppbV$</th>
<th>MRL $ppbV$</th>
<th>MDL $ppbV$</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>6.3</td>
<td>1.4</td>
<td>0.48</td>
<td>1.8</td>
<td>0.38</td>
<td>0.13</td>
<td>J</td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>0.28</td>
<td>0.68</td>
<td>0.20</td>
<td>0.080</td>
<td>0.19</td>
<td>0.058</td>
<td>J</td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.14</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>0.64</td>
<td>0.68</td>
<td>0.27</td>
<td>0.22</td>
<td>0.23</td>
<td>0.092</td>
<td>J</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.12</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>1.6</td>
<td>0.68</td>
<td>0.22</td>
<td>0.50</td>
<td>0.21</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.44</td>
<td>0.68</td>
<td>0.20</td>
<td>0.069</td>
<td>0.11</td>
<td>0.032</td>
<td>J</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.4</td>
<td>0.39</td>
<td>ND</td>
<td>0.40</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.15</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.10</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.68</td>
<td>0.19</td>
<td>ND</td>
<td>0.13</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.19</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.68</td>
<td>0.23</td>
<td>ND</td>
<td>0.17</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis,1,3-Dichloropropene</td>
<td>ND</td>
<td>0.68</td>
<td>0.19</td>
<td>ND</td>
<td>0.15</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans,1,3-Dichloropropene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.15</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>79-09-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.12</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>1.1</td>
<td>0.68</td>
<td>0.23</td>
<td>0.30</td>
<td>0.18</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.053</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Container ID: AS01273
Volume(s) Analyzed: 1.00 Liter(s)
Date Collected: 3/16/18
Date Received: 3/19/18
Date Analyzed: 3/20/18

Initial Pressure (psig): -1.25
Final Pressure (psig): 3.61

Container Dilution Factor: 1.36

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.080</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.089</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.68</td>
<td>0.19</td>
<td>ND</td>
<td>0.10</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.15</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>0.31</td>
<td>0.68</td>
<td>0.22</td>
<td>0.072</td>
<td>0.16</td>
<td>0.050</td>
<td>J</td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>0.63</td>
<td>1.4</td>
<td>0.41</td>
<td>0.14</td>
<td>0.31</td>
<td>0.094</td>
<td>J</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.066</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.16</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.16</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.099</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.14</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.14</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.14</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.14</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.4</td>
<td>0.15</td>
<td>ND</td>
<td>0.26</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.11</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.19</td>
<td>ND</td>
<td>0.11</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.20</td>
<td>ND</td>
<td>0.11</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.68</td>
<td>0.22</td>
<td>ND</td>
<td>0.092</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>0.68</td>
<td>0.24</td>
<td>ND</td>
<td>0.13</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.68</td>
<td>0.19</td>
<td>ND</td>
<td>0.064</td>
<td>0.018</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
Results of Analysis

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:

ALS Project ID: P1801339
ALS Sample ID: P180320-MB
Date Collected: NA
Date Received: NA
Date Analyzed: 3/20/18
Volume(s) Analyzed: 1.00 Liter(s)

Container Dilution Factor: 1.00

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.29</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.10</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.24</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.072</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.20</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>0.50</td>
<td>0.22</td>
<td>ND</td>
<td>0.23</td>
<td>0.099</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.13</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.19</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>5.0</td>
<td>0.77</td>
<td>ND</td>
<td>2.1</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.089</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>ND</td>
<td>5.0</td>
<td>0.42</td>
<td>ND</td>
<td>2.0</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.13</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.14</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.065</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>0.15</td>
<td>ND</td>
<td>1.6</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.13</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.14</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>5.0</td>
<td>0.65</td>
<td>ND</td>
<td>1.4</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>0.21</td>
<td>ND</td>
<td>1.7</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.13</td>
<td>0.040</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P180320-MB

Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	Lusine Hakobyan	Date Analyzed: 3/20/18
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Container Dilution Factor: 1.00

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>ND</td>
<td>1.0</td>
<td>0.35</td>
<td>ND</td>
<td>0.28</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.14</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.10</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>0.50</td>
<td>0.20</td>
<td>ND</td>
<td>0.17</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.092</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.16</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.080</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ND</td>
<td>0.29</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.075</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.093</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.14</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.12</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.11</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.092</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.13</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.039</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill

| Test Code: | EPA TO-15 | Date Collected: NA
| Instrument ID: | Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 | Date Received: NA
| Analyst: | Lusine Hakobyan | Date Analyzed: 3/20/18
| Sample Type: | 6.0 L Silonite Canister | Volume(s) Analyzed: 1.00 Liter(s)

Container Dilution Factor: 1.00

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.059</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.065</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.074</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ND</td>
<td>0.23</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.048</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.073</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.10</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.10</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.10</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.10</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>1.0</td>
<td>0.11</td>
<td>ND</td>
<td>0.19</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.083</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.083</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.083</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.067</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>0.50</td>
<td>0.18</td>
<td>ND</td>
<td>0.095</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.047</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
Client: Waste Management-Stony Hollow Landfill
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973 inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister(s)
Date(s) Collected: 3/16/18
Date(s) Received: 3/19/18
Date(s) Analyzed: 3/20/18

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>ALS Sample ID</th>
<th>1,2-Dichloroethane-d4</th>
<th>Toluene-d8</th>
<th>Bromofluorobenzene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recovered</td>
<td>Percent Recovered</td>
<td>Percent</td>
<td>Percent Recovered</td>
</tr>
<tr>
<td>Method Blank</td>
<td>P180320-MB</td>
<td>104</td>
<td>101</td>
<td>93</td>
</tr>
<tr>
<td>Lab Control Sample</td>
<td>P180320-LCS</td>
<td>104</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>SHAA-N-60</td>
<td>P1801339-001</td>
<td>106</td>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>SHAA-N-60</td>
<td>P1801339-001DUP</td>
<td>108</td>
<td>99</td>
<td>91</td>
</tr>
<tr>
<td>SHAA-S-60</td>
<td>P1801339-002</td>
<td>110</td>
<td>99</td>
<td>92</td>
</tr>
</tbody>
</table>

Surrogate percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.
Laboratory Control Sample Summary

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P180320-LCS
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Date Collected: NA
Date Received: NA
Date Analyzed: 3/20/18
Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount</th>
<th>Result</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>210</td>
<td>231</td>
<td>110</td>
<td>54-133</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>213</td>
<td>207</td>
<td>97</td>
<td>64-115</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>210</td>
<td>219</td>
<td>104</td>
<td>47-140</td>
<td></td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>211</td>
<td>201</td>
<td>95</td>
<td>60-112</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>211</td>
<td>223</td>
<td>106</td>
<td>63-127</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>210</td>
<td>241</td>
<td>115</td>
<td>57-149</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>210</td>
<td>198</td>
<td>94</td>
<td>63-132</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>210</td>
<td>220</td>
<td>105</td>
<td>68-129</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>1,050</td>
<td>1130</td>
<td>108</td>
<td>63-124</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>208</td>
<td>208</td>
<td>100</td>
<td>65-113</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>422</td>
<td>453</td>
<td>107</td>
<td>62-135</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>213</td>
<td>212</td>
<td>100</td>
<td>72-118</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>213</td>
<td>203</td>
<td>95</td>
<td>67-116</td>
<td></td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>214</td>
<td>204</td>
<td>95</td>
<td>68-113</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>214</td>
<td>223</td>
<td>104</td>
<td>68-120</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>214</td>
<td>229</td>
<td>107</td>
<td>71-125</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>212</td>
<td>212</td>
<td>100</td>
<td>68-118</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>213</td>
<td>219</td>
<td>103</td>
<td>60-123</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>1,060</td>
<td>1320</td>
<td>125</td>
<td>73-135</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>212</td>
<td>221</td>
<td>104</td>
<td>70-129</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cisis-1,2-Dichloroethene</td>
<td>212</td>
<td>224</td>
<td>106</td>
<td>69-121</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
ALS ENVIROMENTAL

LABORATORY CONTROL SAMPLE SUMMARY
Page 2 of 3

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:

ALS Project ID: P1801339
ALS Sample ID: P180320-LCS

Date Collected: NA
Date Received: NA
Date Analyzed: 3/20/18
Volume(s) Analyzed: 0.125 Liter(s)

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount</th>
<th>Result</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>426</td>
<td>470</td>
<td>110</td>
<td>66-140</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>213</td>
<td>224</td>
<td>105</td>
<td>61-124</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>212</td>
<td>208</td>
<td>98</td>
<td>69-113</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>212</td>
<td>219</td>
<td>103</td>
<td>66-121</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>212</td>
<td>211</td>
<td>100</td>
<td>62-120</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>212</td>
<td>213</td>
<td>100</td>
<td>65-116</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>213</td>
<td>200</td>
<td>94</td>
<td>66-111</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>214</td>
<td>214</td>
<td>100</td>
<td>64-122</td>
<td></td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>425</td>
<td>437</td>
<td>103</td>
<td>69-115</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>212</td>
<td>219</td>
<td>103</td>
<td>69-121</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>214</td>
<td>228</td>
<td>107</td>
<td>69-123</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>212</td>
<td>198</td>
<td>93</td>
<td>69-112</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>213</td>
<td>221</td>
<td>104</td>
<td>74-123</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>213</td>
<td>227</td>
<td>107</td>
<td>68-118</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>208</td>
<td>228</td>
<td>110</td>
<td>74-129</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>213</td>
<td>243</td>
<td>114</td>
<td>66-138</td>
<td></td>
</tr>
<tr>
<td>10051-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>213</td>
<td>230</td>
<td>108</td>
<td>73-130</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>212</td>
<td>218</td>
<td>103</td>
<td>73-117</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>211</td>
<td>204</td>
<td>97</td>
<td>66-114</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>211</td>
<td>225</td>
<td>107</td>
<td>58-146</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
LABORATORY CONTROL SAMPLE SUMMARY

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P180320-LCS
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyzer: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Date Collected: NA
Date Received: NA
Date Analyzed: 3/20/18
Volume(s) Analyzed: 0.125 Liter(s)

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount</th>
<th>Result</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>212</td>
<td>222</td>
<td>105</td>
<td>67-130</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>211</td>
<td>209</td>
<td>99</td>
<td>70-127</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>212</td>
<td>209</td>
<td>99</td>
<td>62-119</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>212</td>
<td>201</td>
<td>95</td>
<td>66-115</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>212</td>
<td>213</td>
<td>100</td>
<td>69-117</td>
<td></td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>424</td>
<td>435</td>
<td>103</td>
<td>67-117</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>212</td>
<td>217</td>
<td>102</td>
<td>67-135</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>211</td>
<td>218</td>
<td>103</td>
<td>70-128</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>211</td>
<td>220</td>
<td>104</td>
<td>67-118</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>212</td>
<td>234</td>
<td>110</td>
<td>70-125</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>212</td>
<td>217</td>
<td>102</td>
<td>68-116</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>211</td>
<td>230</td>
<td>109</td>
<td>69-124</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>212</td>
<td>220</td>
<td>104</td>
<td>65-117</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>212</td>
<td>225</td>
<td>106</td>
<td>67-124</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>212</td>
<td>233</td>
<td>110</td>
<td>75-142</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>212</td>
<td>205</td>
<td>97</td>
<td>70-124</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>214</td>
<td>201</td>
<td>94</td>
<td>63-124</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>214</td>
<td>213</td>
<td>100</td>
<td>66-125</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>218</td>
<td>196</td>
<td>90</td>
<td>70-141</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>209</td>
<td>167</td>
<td>80</td>
<td>71-146</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>212</td>
<td>209</td>
<td>99</td>
<td>63-126</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
LABORATORY DUPLICATE SUMMARY RESULTS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P1801339-001DUP
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyzer: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS00438
Date Collected: 3/16/18
Date Received: 3/19/18
Date Analyzed: 3/20/18
Volume(s) Analyzed: 1.00 Lier(s)

Initial Pressure (psig): -1.73
Final Pressure (psig): 3.54

Container Dilution Factor: 1.41

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate Result</th>
<th>Average</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>2.35</td>
<td>0.475</td>
<td>2.34</td>
<td>0.474</td>
<td>2.345</td>
<td>0.4</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.661</td>
<td>0.320</td>
<td>0.560</td>
<td>0.271</td>
<td>0.6105</td>
<td>17</td>
</tr>
<tr>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetone</td>
<td>3.66</td>
<td>1.54</td>
<td>3.51</td>
<td>1.48</td>
<td>3.585</td>
<td>4</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.30</td>
<td>0.231</td>
<td>1.23</td>
<td>0.220</td>
<td>1.265</td>
<td>6</td>
</tr>
<tr>
<td>2-Propanol (Isopropyl Alcohol)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.448</td>
<td>0.129</td>
<td>0.437</td>
<td>0.126</td>
<td>0.4425</td>
<td>2</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>0.485</td>
<td>0.0633</td>
<td>0.465</td>
<td>0.0607</td>
<td>0.475</td>
<td>4</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>0.560</td>
<td>0.190</td>
<td>0.527</td>
<td>0.179</td>
<td>0.5435</td>
<td>6</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
LABORATORY DUPLICATE SUMMARY RESULTS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1801339
ALS Sample ID: P1801339-001DUP
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973i/nert/6890N/MS9
Date Collected: 3/16/18
Date Received: 3/19/18
Analyzer: Lusine Hakobyan
Date Analyzed: 3/20/18
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 1.00 Liter(s)
Container ID: AS00438

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate Result</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/m³</td>
<td>ppbV</td>
<td>µg/m³</td>
<td>ppbV</td>
<td>Average</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>4.77</td>
<td>1.32</td>
<td>4.75</td>
<td>1.32</td>
<td>4.76</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.331</td>
<td>0.104</td>
<td>0.334</td>
<td>0.105</td>
<td>0.3325</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.419</td>
<td>0.0666</td>
<td>0.430</td>
<td>0.0684</td>
<td>0.4245</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.429</td>
<td>0.114</td>
<td>0.429</td>
<td>0.114</td>
<td>0.429</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
LABORATORY DUPLICATE SUMMARY RESULTS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-60
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 1.00 L
Container ID: AS00438

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate</th>
<th>Average</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/m³</td>
<td>µg/m³</td>
<td></td>
<td>µg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppbV</td>
<td>ppbV</td>
<td></td>
<td>ppbV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>m,p-Xylenes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>α-Xylene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Cumene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>25</td>
</tr>
</tbody>
</table>

Initial Pressure (psig): -1.73
Final Pressure (psig): 3.54

Container Dilution Factor: 1.41

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
21-Mar-2018

Alex Zelles
Waste Management
2460 S. Gettysburg Rd
Dayton, OH 45417

Tel: (937) 356-6204
Fax:

Re: Stony Hollow Landfill

Work Order: 1803622

Dear Alex,

ALS Environmental received 2 samples on 16-Mar-2018 12:26 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 7.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Rob Nieman

Electronically approved by: Rob Nieman

Rob Nieman
Project Manager
<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Client Sample ID</th>
<th>Matrix</th>
<th>Tag Number</th>
<th>Collection Date</th>
<th>Date Received</th>
<th>Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1803622-01</td>
<td>SHAA-N-60</td>
<td>Air</td>
<td></td>
<td>3/16/2018</td>
<td>3/16/2018 12:26</td>
<td></td>
</tr>
<tr>
<td>1803622-02</td>
<td>SHAA-S-60</td>
<td>Air</td>
<td></td>
<td>3/16/2018</td>
<td>3/16/2018</td>
<td></td>
</tr>
</tbody>
</table>
The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

Compound identification is based upon retention time matching only. Any compound with a similar retention time will interfere.

Samples were prepared and analyzed by the analytical method and the laboratory's applicable standard operating procedure listed below:
- IH-001- "Determination of Analytes Using NIOSH and OSHA Methods Using Gas Chromatography."
- IH-002- "Determination of Suspended Particulates in the Atmosphere Using Various Media"
- IH-003- "Determination of Suspended Particulates Not Otherwise Regulated (Total and Respirable)."
- IH-004- "Determination of Analytes by NIOSH and OSHA Methods Using Liquid Chromatography."
- IH-005- "Benzene-Soluble Fraction and Total Particulate (Asphalt Fume)."
- IH-006- "Methods IO-3.1 and IO-3.4 Modified for Metals Preparation and Analysis for Suspended Particulates."
- IH-196- "Carbon Black by OSHA 196."
- IH-6009- "Determination of Mercury in Industrial Hygiene Samples by Manual Cold Vapor Atomic Absorption Spectroscopy."
- ENV-6010B- "Determination of Trace Metals in Solution by Inductively Coupled Plasma-Atomic Emission Spectroscopy by EPA Method 6010B Non-VAP."
- IH-7300 modified- "Elements by ICP."

ALS is an EPA recognized NLLAP laboratory for lead paint, soil, and dust wipe analyses under its AIHA-LAP accreditation.
Analytical Results

Client: Waste Management
Project: Stony Hollow Landfill
Work Order: 1803622

ALS Environmental

Analytical Results

Lab ID: 1803622-01A
Collection Date: 3/16/2018
Client Sample ID: SHAA-N-60
Matrix: AIR

Aldehydes by OSHA 1007 MOD.

<table>
<thead>
<tr>
<th>Substance</th>
<th>µg/sample</th>
<th>Reporting Limit µg/sample</th>
<th>ppm</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>0.26</td>
<td>0.20</td>
<td>0.0044</td>
<td>AW</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0023</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>0.56</td>
<td>0.20</td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0050</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0040</td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0035</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0042</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 1803622-02A
Collection Date: 3/16/2018
Client Sample ID: SHAA-S-60
Matrix: AIR

Aldehydes by OSHA 1007 MOD.

<table>
<thead>
<tr>
<th>Substance</th>
<th>µg/sample</th>
<th>Reporting Limit µg/sample</th>
<th>ppm</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0033</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0023</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>0.35</td>
<td>0.20</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0050</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0040</td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0035</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td><0.0042</td>
<td></td>
</tr>
</tbody>
</table>

Note:
QC BATCH REPORT

Client: Waste Management
Work Order: 1803622
Project: Stony Hollow Landfill
Date: 21-Mar-18

<table>
<thead>
<tr>
<th>Batch ID: 49566</th>
<th>Instrument ID: HPLC2</th>
<th>Method: 01007</th>
</tr>
</thead>
</table>

MBLK
Sample ID: MBLK-49566-49566
Run ID: HPLC2_1803620A
Units: µg/sample
Analysis Date: 3/20/2018
Prep Date: 3/20/2018
DF: 1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS
Sample ID: LCS-49566-49566
Run ID: HPLC2_1803620A
Units: µg/sample
Analysis Date: 3/20/2018
Prep Date: 3/20/2018
DF: 1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>0.7588</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>101</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>0.7813</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>104</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>0.7808</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>104</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>0.7795</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>104</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.7557</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>101</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>0.8102</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>108</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>0.7603</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>101</td>
<td>70-130</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCSD
Sample ID: LCSD-49566-49566
Run ID: HPLC2_1803620A
Units: µg/sample
Analysis Date: 3/20/2018
Prep Date: 3/20/2018
DF: 1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>0.8045</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7588</td>
<td>5.65</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>0.8054</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7813</td>
<td>2.66</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>0.805</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7808</td>
<td>3.06</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>0.8005</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7795</td>
<td>3.22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.8036</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7557</td>
<td>6.14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>0.8128</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>108</td>
<td>70-130</td>
<td>0.8102</td>
<td>0.32</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>0.7994</td>
<td>0.20</td>
<td>0.75</td>
<td>0</td>
<td>107</td>
<td>70-130</td>
<td>0.7603</td>
<td>5.61</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The following samples were analyzed in this batch: 1803622-01A 1803622-02A

Note: See Qualifiers Page for a list of Qualifiers and their explanation.
QUALIFIERS, ACRONYMS, UNITS

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Value exceeds Regulatory Limit</td>
</tr>
<tr>
<td>A</td>
<td>Analyte detected in the associated Method Blank above the Reporting Limit</td>
</tr>
<tr>
<td>B</td>
<td>Analyte detected below quantitation limit</td>
</tr>
<tr>
<td>E</td>
<td>Value above quantitation range</td>
</tr>
<tr>
<td>H</td>
<td>Analyzed outside of Holding Time</td>
</tr>
<tr>
<td>J</td>
<td>Analyte detected below quantitation limit</td>
</tr>
<tr>
<td>N</td>
<td>Not offered for accreditation</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected at the Reporting Limit</td>
</tr>
<tr>
<td>O</td>
<td>Sample amount is > 4 times amount spiked</td>
</tr>
<tr>
<td>P</td>
<td>Dual Column results percent difference > 40%</td>
</tr>
<tr>
<td>R</td>
<td>RPD above laboratory control limit</td>
</tr>
<tr>
<td>S</td>
<td>Spike Recovery outside laboratory control limits</td>
</tr>
<tr>
<td>U</td>
<td>Analyzed but not detected above the MDL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUP</td>
<td>Method Duplicate</td>
</tr>
<tr>
<td>E</td>
<td>EPA Method</td>
</tr>
<tr>
<td>LCS</td>
<td>Laboratory Control Sample</td>
</tr>
<tr>
<td>LCSD</td>
<td>Laboratory Control Sample Duplicate</td>
</tr>
<tr>
<td>MBLK</td>
<td>Method Blank</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>MQL</td>
<td>Method Quantitation Limit</td>
</tr>
<tr>
<td>MS</td>
<td>Matrix Spike</td>
</tr>
<tr>
<td>MSD</td>
<td>Matrix Spike Duplicate</td>
</tr>
<tr>
<td>PDS</td>
<td>Post Digestion Spike</td>
</tr>
<tr>
<td>PQL</td>
<td>Practical Quantitation Limit</td>
</tr>
<tr>
<td>SDL</td>
<td>Sample Detection Limit</td>
</tr>
<tr>
<td>SW</td>
<td>SW-846 Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units Reported</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/sample</td>
<td></td>
</tr>
</tbody>
</table>
Sample Receipt Checklist

Client Name: STONYHOLLOWLANDFILL-DAY
Work Order: 1803622
Date/Time Received: 16-Mar-18 12:26
Received by: SNH

Checklist completed by: Stephanie Harrington
Reviewed by: Ros Niman
Date: 16-Mar-18
Date: 20-Mar-18

Matrices:
Carrier name: Courier

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Not Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping container/cooler in good condition?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custody seals intact on shipping container/cooler?</td>
<td></td>
<td>☐️</td>
<td>☑️</td>
</tr>
<tr>
<td>Custody seals intact on sample bottles?</td>
<td></td>
<td>☐️</td>
<td>☑️</td>
</tr>
<tr>
<td>Chain of custody present?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of custody signed when relinquished and received?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of custody agrees with sample labels?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples in proper container/bottle?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample containers intact?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient sample volume for indicated test?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All samples received within holding time?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container.Temp Blank temperature in compliance?</td>
<td>☑️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature(s)/Thermometer(s):

Cooler(s)/Kit(s):

Water - VOA vials have zero headspace?

Water - pH acceptable upon receipt?

pH adjusted?

pH adjusted by:

Login Notes:

Client Contacted:
Date Contacted:
Person Contacted:

Contacted By: Regarding:

Comments:

Corrective Action:
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Matrix</th>
<th>Comp</th>
<th>Grab</th>
<th># Bufs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAA-N-10</td>
<td>3/15/18</td>
<td>09:55</td>
<td>Air</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SHAA-S-10</td>
<td>3/16/18</td>
<td>10:07</td>
<td>Air</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Special instructions:

- Rush

Analysis Requested

- OSHA-1007

Remarks:

- A 273224
- A 273238

ALS LAB USE ONLY

- Cooler Temp: °C
- pH Adjustments:
- Cooling Method: None, Cooler, Ice, Dry Ice, Ice Pack
- Delivery Method: Client, Drop Box, FedEx, UPS, STD Mail, FRTY Mail, ALS Courier, Other: _____
- Custody Seals: None, Cooler, Package, Sample

Relinquished by:

- Alex Zelies
- Date/time: 3/15/18 10:05
- Received by: [signature]

- Date/time: 3/16/18 11:23
- Received by: [signature]