June 6, 2017

Ms. Jennifer Marsee
Unit Supervisor
Regional Air Pollution Control Agency
117 South Main Street
Dayton, OH 45422

Re: DFFO Order No. 9 Ambient Air Monitoring – May 25-26, 2017
Stony Hollow Landfill
Facility ID No. 08-57-04-3008

Dear Ms. Marsee:

Stony Hollow Landfill, Inc. (Stony Hollow) contracted with LJB, Inc. (LJB) to perform the ambient air monitoring on the 1 in 3-day schedule as required by the Director’s Final Findings and Orders, dated May 3, 2017. The 24-hour ambient air sampling was performed between May 25-26, 2017 and ALS Environmental performed the USEPA Method TO-15, ASTM D 5504-12, and OSHA 1007 analyses.

Please find attached to this submittal letter the LJB ambient air monitoring report, which includes the analytical results. Per a review of the analytical results, the measured concentrations within the air samples were below the laboratory reporting limits or the NIOSH RELs and ATSDR MRLs.

If you have any questions, please contact the undersigned at (937) 356-6204.

Sincerely,

[Signature]

Peter Lucas, P.E.
District Engineer

cc: Russell Brown, Michelle Ackenhausen - Ohio EPA
Stony Hollow files
June 5, 2017

Mr. Peter Lucas
Waste Management – Stony Hollow Landfill
2460 South Gettysburg Avenue
Dayton, Ohio 45417

Via email: phucas2@wm.com

Re: May 25, 2017 ambient air sampling at Stony Hollow Landfill

Dear Mr. Lucas:

On May 25 through May 26, 2017 LJB Inc. collected two 24-hour ambient air samples at the Waste Management Stony Hollow Landfill. The samples included SHAA-N-04, collected from inside the northeast fence line of the landfill, and SHAA-S-04, collected from inside the southeast fence line of the landfill. One Summa canister and one UMEx 100 Passive Sampler were collected at each location. Attached is a map of the sample locations designated by Waste Management in accordance with the May 3, 2017 Ohio EPA Director’s Final Findings and Orders for Stony Hollow Landfill and the Air Monitor Siting Study prepared by SCS Engineers for Stony Hollow Landfill. Table 1 contains sample equipment and interval details.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>SHAA-N-04</td>
</tr>
<tr>
<td>SHAA-S-04</td>
</tr>
</tbody>
</table>

Weather conditions reported for the sample period by the weather station located at Stony Hollow Landfill are shown in the attached graphs.

The completed UMEx 100 samplers were transported by courier from the LJB offices to ALS Environmental’s Cincinnati, Ohio laboratory on May 26, 2017 and were analyzed by OSHA Method 1007 on May 31, 2017 per the three-day turnaround time previously arranged. The Summa canisters were transported by Federal Express second-day delivery, arriving at ALS Environmental’s Simi Valley, California Laboratory on May 30, 2017, and were analyzed by EPA Method TO-15 on May 31, 2017 and ASTM Standard Test Method D5504-12 on June 1, 2017. Table 2 provides the summarized sample results.

The EPA Method TO-15 found that only 2-butanone, acetone, benzene, carbon tetrachloride, chloromethane, dichlorodifluoromethane, ethyl acetate, Freon 113, m,p-xylene, methylene chloride, naphthalene, tetrahydrofuran, toluene, trichloroethylene and trichlorofluoromethane were detected above
laboratory reporting limits; concentrations of all were well below the NIOSH RELs and ASTDR MRLs for these compounds. Propene was also detected above laboratory reporting limits; however, no NIOSH REL or ASTDR MRL has been established for the inhalation route (gaseous air) of this compound. The ASTM Standard Test Method D5504-12 did not detect any compounds above the laboratory reporting limits. The OSHA Method 1007 detected formaldehyde above laboratory reporting limits; concentrations of this compound were well below the NIOSH REL and ATSDR MRL.

TABLE 2

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SHAA-N-02, ppbv</th>
<th>SHAA-S-42, ppbv</th>
<th>NIOSH REL, ppbv</th>
<th>ATSDR MRL, ppbv</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA TO-15 (Summa canister)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><0.14</td>
<td><0.15</td>
<td>350,000</td>
<td>700</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><0.11</td>
<td><0.12</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><0.14</td>
<td><0.15</td>
<td>10,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><0.19</td>
<td><0.20</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td><0.20</td>
<td><0.21</td>
<td>200,000</td>
<td>20</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td><0.11</td>
<td><0.11</td>
<td>5,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td><0.16</td>
<td><0.17</td>
<td>25,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><0.10</td>
<td><0.11</td>
<td>45</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><0.13</td>
<td><0.14</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><0.19</td>
<td><0.20</td>
<td>1,000</td>
<td>600</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><0.17</td>
<td><0.18</td>
<td>75,000</td>
<td>7</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td><0.16</td>
<td><0.17</td>
<td>25,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td><0.35</td>
<td><0.37</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><0.13</td>
<td><0.14</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><0.13</td>
<td><0.14</td>
<td>50,000</td>
<td>10</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><0.22</td>
<td><0.23</td>
<td>NA</td>
<td>30</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>0.20 (J)</td>
<td>0.27 (J)</td>
<td>200</td>
<td>NA</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><0.19</td>
<td><0.20</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>2-Propanol</td>
<td><3.2</td>
<td><3.3</td>
<td>400,000</td>
<td>NA</td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td><0.16</td>
<td><0.17</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td><0.19</td>
<td><0.20</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>Acetone</td>
<td>2.0 (J)</td>
<td>2.1 (J)</td>
<td>250,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.097 (J)</td>
<td>0.20 (J)</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Benzy1 chloride</td>
<td><0.15</td>
<td><0.16</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><0.12</td>
<td><0.12</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bromoform</td>
<td><0.076</td>
<td><0.079</td>
<td>500</td>
<td>NA</td>
</tr>
<tr>
<td>Bromomethane</td>
<td><0.20</td>
<td><0.21</td>
<td>20,000</td>
<td>5</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><2.5</td>
<td><2.6</td>
<td>1,000</td>
<td>300</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>SHAAN-02, ppbv</td>
<td>SHAAN-02, ppbv</td>
<td>NIOSH REL, ppbv</td>
<td>ATSDR MRL, ppbv</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.057 (J)</td>
<td>0.055 (J)</td>
<td>2,000</td>
<td>30</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><0.17</td>
<td><0.18</td>
<td>75,000</td>
<td>NA</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><0.30</td>
<td><0.31</td>
<td>1,000,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Chloroform</td>
<td><0.16</td>
<td><0.17</td>
<td>2,000</td>
<td>20</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.13 (J)</td>
<td>0.14 (J)</td>
<td>100,000</td>
<td>50</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td><0.20</td>
<td><0.21</td>
<td>200,000</td>
<td>NA</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><0.17</td>
<td><0.18</td>
<td>1,000</td>
<td>7</td>
</tr>
<tr>
<td>Cumene</td>
<td><0.16</td>
<td><0.17</td>
<td>50,000</td>
<td>NA</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td><0.46</td>
<td><0.47</td>
<td>300,000</td>
<td>NA</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><0.092</td>
<td><0.096</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.38</td>
<td>0.40</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>1.8</td>
<td>0.75</td>
<td>400,000</td>
<td>NA</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><0.18</td>
<td><0.19</td>
<td>100,000</td>
<td>60</td>
</tr>
<tr>
<td>Freon 113 (Trichlorotrifluoroethane)</td>
<td>0.055 (J)</td>
<td><0.11</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Freon 114 (1,2-Dichloro-1,2,2-</td>
<td><0.11</td>
<td><0.12</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>tetrafluoroethane)</td>
<td>N-heptane</td>
<td><0.19</td>
<td><0.20</td>
<td>85,000</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td><0.074</td>
<td><0.076</td>
<td>20</td>
<td>NA</td>
</tr>
<tr>
<td>Hexene (n-Hexane)</td>
<td><0.22</td>
<td><0.23</td>
<td>50,000</td>
<td>600</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td><0.36</td>
<td>0.13 (J)</td>
<td>100,000</td>
<td>50</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>0.11 (J)</td>
<td>0.12 (J)</td>
<td>25,000</td>
<td>300</td>
</tr>
<tr>
<td>MTBE (Methyl tert-butyl ether)</td>
<td><0.22</td>
<td><0.23</td>
<td>2,000</td>
<td>NA</td>
</tr>
<tr>
<td>Naphthalene</td>
<td><0.15</td>
<td>0.065 (J)</td>
<td>10,000</td>
<td>1</td>
</tr>
<tr>
<td>o-Xylene</td>
<td><0.18</td>
<td><0.19</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Propene</td>
<td>0.13 (J)</td>
<td>0.21 (J)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Styrene</td>
<td><0.18</td>
<td><0.19</td>
<td>50,000</td>
<td>200</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td><0.12</td>
<td><0.12</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td><0.27</td>
<td>0.17 (J)</td>
<td>200,000</td>
<td>NA</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.19 (J)</td>
<td>0.28</td>
<td>100,000</td>
<td>1,000</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td><0.20</td>
<td><0.21</td>
<td>200,000</td>
<td>200</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><0.17</td>
<td><0.18</td>
<td>1,000</td>
<td>7</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td><0.15</td>
<td>0.042 (J)</td>
<td>100,000</td>
<td>NA</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.18</td>
<td>0.056 (J)</td>
<td>1,000,000</td>
<td>NA</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><2.2</td>
<td><2.3</td>
<td>4,000</td>
<td>10</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td><0.31</td>
<td><0.32</td>
<td>1,000</td>
<td>30</td>
</tr>
<tr>
<td>ASTM D5504-12 (Summa canister)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Dimethylthiophene</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>SHAA-N-02. ppbv</td>
<td>SHAA-S-42. ppbv</td>
<td>NIOSH REL. ppbv</td>
<td>ATSDR MRL. ppbv</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2-Ethylthiophene</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3-Methylthiophene</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><3.9</td>
<td><4.1</td>
<td>1,000</td>
<td>300</td>
</tr>
<tr>
<td>Carbonyl sulfide</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diethyl disulfide</td>
<td><3.9</td>
<td><4.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td><3.9</td>
<td><4.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ethyl methyl sulfide</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>2</td>
</tr>
<tr>
<td>Isobutyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Isopropyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>n-Butyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>n-Propyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>tert-Butyl mercaptan</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Thiophene</td>
<td><7.9</td>
<td><8.2</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

OSHA 1007 (IVEx 100 sampler)

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SHAA-N-02. ppbv</th>
<th>SHAA-S-42. ppbv</th>
<th>NIOSH REL. ppbv</th>
<th>ATSDR MRL. ppbv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td><1.5</td>
<td><1.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td><1.0</td>
<td><1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td><1.3</td>
<td><1.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td><2.2</td>
<td><2.2</td>
<td>2,000</td>
<td>NA</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1.9</td>
<td>2.5</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td><5.2</td>
<td><5.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td><1.9</td>
<td><1.9</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

J = The result is an estimated concentration that is less than the method reporting limit but greater than the method detection limit.

NA = Limit not established for inhalation route (gaseous air samples).

All ALS Environmental laboratory reports and chain of custody forms are attached. Please let me know if you have any questions.

Sincerely,

LJB Inc.

[Signature]

Alexander M. Zellers
Mr. Peter Lucas: May 25, 2017 ambient air sampling
June 5, 2017
Page 5

Alexandra Zelles
Environmental Scientist
June 2, 2017

Peter Lucas
Waste Management-Stony Hollow Landfill
2460 S Gettysburg Ave.
Dayton, OH 45417

RE: Stony Hollow Landfill

Dear Peter:

Enclosed are the results of the samples submitted to our laboratory on May 30, 2017. For your reference, these analyses have been assigned our service request number P1702578.

All analyses were performed according to our laboratory’s NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, with the exception as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Kate Kaneko
Project Manager
CASE NARRATIVE

The samples were received intact under chain of custody on May 30, 2017 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Sulfur Analysis

The samples were analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory’s NELAP scope of accreditation, however it is not part of the DoD-ELAP accreditation.

Volatile Organic Compound Analysis

The samples were also analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory’s NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The containers were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.
CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

<table>
<thead>
<tr>
<th>Agency</th>
<th>Web Site</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida DOH (NELAP)</td>
<td>http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm</td>
<td>EB71020</td>
</tr>
<tr>
<td>Louisiana DEQ (NELAP)</td>
<td>http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx</td>
<td>05071</td>
</tr>
<tr>
<td>Minnesota DOH (NELAP)</td>
<td>http://www.health.state.mn.us/accreditation</td>
<td>1177034</td>
</tr>
<tr>
<td>New Jersey DEP (NELAP)</td>
<td>http://www.nj.gov/dep/oqa/</td>
<td>CA009</td>
</tr>
<tr>
<td>New York DOH (NELAP)</td>
<td>http://www.wadsworth.org/labcert/elap/elap.html</td>
<td>11221</td>
</tr>
<tr>
<td>Oregon PHD (NELAP)</td>
<td>http://public.health.oregon.gov/LaboratoryServices/EnvironmenalLaboratoryAccreditation/Pages/Index.aspx</td>
<td>4068-004</td>
</tr>
<tr>
<td>Pennsylvania DEP</td>
<td>http://www.depweb.state.pa.us/labs</td>
<td>68-03307 (Registration)</td>
</tr>
<tr>
<td>PJLA (DoD ELAP)</td>
<td>http://www.pjjabs.com/search-accredited-labs</td>
<td>65818 (Testing)</td>
</tr>
<tr>
<td>Texas CEQ (NELAP)</td>
<td>http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html</td>
<td>TI04704413-16-7</td>
</tr>
<tr>
<td>Utah DOH (NELAP)</td>
<td>http://health.utah.gov/lab/environmental-lab-certification/</td>
<td>CA016227201 6-6</td>
</tr>
</tbody>
</table>

Analyses were performed according to our laboratory’s NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.alsglobal.com, or at the accreditation body’s website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.
ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Lab Code</th>
<th>Matrix</th>
<th>Date Collected</th>
<th>Time Collected</th>
<th>Container ID</th>
<th>$p_	ext{l}$ (psig)</th>
<th>$p_	ext{f}$ (psig)</th>
<th>ASTM D5504-12</th>
<th>TO-15</th>
<th>VOC Cans</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHAA-S-04</td>
<td>P1702578-002</td>
<td>Air</td>
<td>5/26/2017</td>
<td>10:16</td>
<td>AC01854</td>
<td>-3.31</td>
<td>3.81</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Air - Chain of Custody Record & Analytical Service Request

Company Name & Address (Reporting Information):
LJS Inc. U/Waste Management-Stony Hollow
2600 Newport Dr.
Miamisburg, OH 45342

Project Name: Stony Hollow Landfill

P.O. # / Billing Information:
Per Peter Lucas/NWI

Client Sample ID	**Laboratory ID Number**	**Date Collected**	**Time Collected**	**Cartridge ID**	**Flow Controller ID (Bar code # - PC #)**	**Cartridge Start Pressure**	**Cartridge End Pressure**	**Sample Volume**
SMAA-N-04 | 0 | 5/25/17 10:00 | 0:00 | A500B3A4 | SFC00047 | -30° Hg | -8.5° Hg | X X |
SMAA-S-04 | 0 | 5/25/17 10:00 | 0:00 | ACO1954 | SFC00129 | -28° Hg | -6.5° Hg | X X |

Report Tier Levels - please select:
- Tier I (Results) (Default if not specified)
- Tier II (Results + QC Summaries) X
- Tier IV (Data Validation Package) 10% Surcharge

Sampled by: [Signature]

Relinquished by: [Signature]

Analysis Method:
- TC-15
- ASTM D 5544

Comments:
- e.g. Actual Preservative or specific instructions

Confirmation:
- Chain of Custody Seal: (Circle)
 - Type: INTACT
 - Units: BOTTLE
 - Project Requirements (MRLs, QAPP): BROKEN/ABSENT

Returned by: [Signature]

Relinquished by: [Signature]

Date: 5/26/17

Time: 10:53 am

Received by: [Signature]

Date: 7/9/2013

Time: 3:30 pm

Referee: [Signature]

Date: 5/30/17

Time: 09:00
ALS Environmental
Sample Acceptance Check Form

Client: Waste Management-Stony Hollow Landfill
Project: Stony Hollow Landfill
Sample(s) received on: 5/30/17
Date opened: 5/30/17
by: ADAVID

Note: This form is used for all samples received by ALS. The use of this form for custody seals is strictly meant to indicate presence/absence and not an indication of compliance or noncompliance. Thermal preservation and pH will only be evaluated either at the request of the client and/or as required by the method/SOP.

1. Were sample containers properly marked with client sample ID? [X] [] []
2. Did sample containers arrive in good condition? [X] [] []
3. Were chain-of-custody papers used and filled out? [X] [] []
4. Did sample container labels and/or tags agree with custody papers? [X] [] []
5. Was sample volume received adequate for analysis? [X] [] []
6. Are samples within specified holding times? [X] [] []
7. Was proper temperature (thermal preservation) of cooler at receipt adhered to? [] [] [X]
8. Were custody seals on outside of cooler/Box/Container? [X] [] []
 Location of seal(s)? ________________________________ Sealing Lid? [] [] [X]
 Were signature and date included? [] [X] []
 Were seals intact? [] [X] []
9. Do containers have appropriate preservation, according to method/SOP or Client specified information? [] [X] []
 Is there a client indication that the submitted samples are pH preserved? [] [X] []
 Were VOA vials checked for presence/absence of air bubbles? [] [X] []
 Does the client/method/SOP require that the analyst check the sample pH and if necessary alter it? [] [X] []
10. Tubes: Are the tubes capped and intact? [] [X] []
11. Badges: Are the badges properly capped and intact? [] [X] []
 Are dual bed badges separated and individually capped and intact? [] [X] []

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Container Description</th>
<th>Required pH *</th>
<th>Received pH</th>
<th>Adjusted pH</th>
<th>VOA Headspace (Presence/Absence)</th>
<th>Receipt / Preservation Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1702578-001.01</td>
<td>6.0 L Silonite Can</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1702578-002.01</td>
<td>6.0 L Ambient Can</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEP99, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)
Results of Analysis

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-04
Client Project ID: Stony Hollow Landfill

Test Code: ASTM D 5504-12
Instrument ID: Agilent 7890A/GC22/SCD
Analyst: Mike Conejo
Sample Type: 6.0 L Silonite Canister
Test Notes:
Container ID: AS00824

- Initial Pressure (psig): -3.10
- Final Pressure (psig): 3.53

Canister Dilution Factor: 1.57

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result $\mu g/m^3$</th>
<th>MRL $\mu g/m^3$</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>11</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>19</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>15</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulfide</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>12</td>
<td>ND</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>24</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>24</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>24</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>27</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>109-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>15</td>
<td>ND</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>32</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>28</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>36</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>36</td>
<td>ND</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-04
Client Project ID: Stony Hollow Landfill

ALS Project ID: P1702578
ALS Sample ID: P1702578-002

Test Code: ASTM D 5504-12
Instrument ID: Agilent 7890A/GC22/SCD
Analyst: Mike Conejo
Sample Type: 6.0 L Summa Canister
Test Notes:
Container ID: AC01854

Date Collected: 5/26/17
Time Collected: 10:16
Date Received: 5/30/17
Time Analyzed: 08:25
Volume(s) Analyzed: 1.0 ml(s)

Initial Pressure (psig): -3.31 Final Pressure (psig): 3.81

Canister Dilution Factor: 1.63

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>11</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulfide</td>
<td>ND</td>
<td>21</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>30</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>25</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>28</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>30</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>30</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>109-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>30</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>33</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>37</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>37</td>
<td>ND</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
Client Information

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P170601-MB

Test Information

- **Test Code:** ASTM D 5504-12
- **Instrument ID:** Agilent 7890A/GC22/SCD
- **Analyst:** Mike Conejo
- **Sample Type:** 6.0 L Silonite Canister
- **Test Notes:**
- **Date Collected:** NA
- **Time Collected:** NA
- **Date Received:** NA
- **Date Analyzed:** 6/01/17
- **Time Analyzed:** 07:14
- **Volume(s) Analyzed:** 1.0 ml(s)

Results of Analysis

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>ND</td>
<td>7.0</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>ND</td>
<td>12</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>ND</td>
<td>9.8</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethyl Mercaptan</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl Sulphide</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>7.8</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>75-33-2</td>
<td>Isopropyl Mercaptan</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>75-66-1</td>
<td>tert-Butyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>107-03-9</td>
<td>n-Propyl Mercaptan</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>624-89-5</td>
<td>Ethyl Methyl Sulfide</td>
<td>ND</td>
<td>16</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-02-1</td>
<td>Thiophene</td>
<td>ND</td>
<td>17</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>513-44-0</td>
<td>Isobutyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>352-93-2</td>
<td>Diethyl Sulfide</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>109-79-5</td>
<td>n-Butyl Mercaptan</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>624-92-0</td>
<td>Dimethyl Disulfide</td>
<td>ND</td>
<td>9.6</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>616-44-4</td>
<td>3-Methylthiophene</td>
<td>ND</td>
<td>20</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene</td>
<td>ND</td>
<td>18</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>638-02-8</td>
<td>2,5-Dimethylthiophene</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>872-55-9</td>
<td>2-Ethylthiophene</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>110-81-6</td>
<td>Diethyl Disulfide</td>
<td>ND</td>
<td>12</td>
<td>ND</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
LABORATORY CONTROL SAMPLE SUMMARY

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P170601-LCS

<table>
<thead>
<tr>
<th>Test Code:</th>
<th>ASTM D 5504-12</th>
<th>Date Collected: NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument ID:</td>
<td>Agilent 7890A/GC22/SCD</td>
<td>Date Received: NA</td>
</tr>
<tr>
<td>Analyst:</td>
<td>Mike Conejo</td>
<td>Date Analyzed: 6/01/17</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>6.0 L Silonite Canister</td>
<td>Volume(s) Analyzed: NA ml(s)</td>
</tr>
<tr>
<td>Test Notes:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount ppbV</th>
<th>Result ppbV</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>7783-06-4</td>
<td>Hydrogen Sulfide</td>
<td>1,000</td>
<td>1,060</td>
<td>106</td>
<td>75-148</td>
<td></td>
</tr>
<tr>
<td>463-58-1</td>
<td>Carbonyl Sulfide</td>
<td>1,000</td>
<td>1,100</td>
<td>110</td>
<td>70-137</td>
<td></td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl Mercaptan</td>
<td>1,000</td>
<td>1,090</td>
<td>109</td>
<td>72-139</td>
<td></td>
</tr>
</tbody>
</table>
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-04
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P1702578-001

Test Code: EPA TO-15
Date Collected: 5/26/17
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Date Received: 5/30/17
Analyzer: Lusine Hakobyan
Date Analyzed: 5/31/17
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:
Container ID: AS00824

CAS #	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		µg/m³	µg/m³	µg/m³	ppb/V	µg/m³	µg/m³	Qualifier
115-07-1	Propene	0.23	0.79	0.22	0.13	0.40	0.13	J
75-71-8	Dichlorodifluoromethane (CFC 12)	1.9	0.79	0.27	0.38	0.16	0.054	J
74-87-3	Chloromethane	0.27	0.79	0.24	0.13	0.38	0.11	J
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	ND	0.79	ND	ND	0.11	0.043	
75-01-4	Vinyl Chloride	ND	0.79	0.27	ND	0.31	0.10	
106-99-0	1,3-Butadiene	ND	0.79	0.35	ND	0.35	0.16	
74-83-9	Bromomethane	ND	0.79	0.30	ND	0.20	0.077	
75-00-3	Chloroethane	ND	0.79	0.27	ND	0.30	0.10	
67-64-1	Acetone	4.7	7.9	1.2	2.0	3.3	0.51	J
75-69-4	Trichlorofluoromethane (CFC 11)	1.0	0.79	0.27	0.18	0.14	0.048	
67-63-0	2-Propanol (isopropyl Alcohol)	ND	7.9	0.66	ND	3.2	0.27	
75-35-4	1,1-Dichloroethene	ND	0.79	0.27	ND	0.20	0.067	
75-09-2	Methylene Chloride	0.38	0.79	0.27	0.11	0.23	0.077	J
76-13-1	Trichlorotrifluoroethane (CFC 113)	0.42	0.79	0.27	0.055	0.10	0.035	J
75-15-0	Carbon Disulfide	ND	7.9	0.24	ND	2.5	0.076	
156-60-5	trans-1,2-Dichloroethene	ND	0.79	0.30	ND	0.20	0.075	
75-34-3	1,1-Dichloroethene	ND	0.79	0.25	ND	0.19	0.062	
1634-04-4	Methyl tert-Butyl Ether	ND	0.79	0.27	ND	0.22	0.074	
108-05-4	Vinyl Acetate	ND	7.9	1.0	ND	2.2	0.29	
78-93-3	2-Butanone (MEK)	0.59	7.9	0.33	0.20	2.7	0.11	J
156-59-2	cis-1,2-Dichloroethene	ND	0.79	0.25	ND	0.20	0.063	

Initial Pressure (psig): 3.10
Final Pressure (psig): 3.53

Canister Dilution Factor: 1.57

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-04
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instruments ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Container ID: AS00824
Initial Pressure (psig): -3.10
Final Pressure (psig): 3.53
Volume(s) Analyzed: 1.00 Liter(s)
Date Collected: 5/26/17
Date Received: 5/30/17
Date Analyzed: 5/31/17

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>6.6</td>
<td>1.6</td>
<td>0.55</td>
<td>1.8</td>
<td>0.44</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.22</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.79</td>
<td>0.27</td>
<td>ND</td>
<td>0.16</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>0.79</td>
<td>0.31</td>
<td>ND</td>
<td>0.27</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.19</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.27</td>
<td>ND</td>
<td>0.14</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>0.31</td>
<td>0.79</td>
<td>0.25</td>
<td>0.097</td>
<td>0.25</td>
<td>0.079</td>
<td>J</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.36</td>
<td>0.79</td>
<td>0.24</td>
<td>0.057</td>
<td>0.12</td>
<td>0.037</td>
<td>J</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.6</td>
<td>0.46</td>
<td>ND</td>
<td>0.46</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.17</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.79</td>
<td>0.22</td>
<td>ND</td>
<td>0.15</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.22</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.79</td>
<td>0.27</td>
<td>ND</td>
<td>0.19</td>
<td>0.065</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis,1,3-Dichloropropene</td>
<td>ND</td>
<td>0.79</td>
<td>0.22</td>
<td>ND</td>
<td>0.17</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.19</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.17</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.14</td>
<td>0.046</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>0.71</td>
<td>0.79</td>
<td>0.27</td>
<td>0.19</td>
<td>0.21</td>
<td>0.071</td>
<td>J</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.19</td>
<td>0.061</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-N-04
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975CInert/6890N/MS16
Analyst: Lusine Hakoyan
Sample Type: 6.0 L Silonite Canister
Container ID: AS00824
Volume(s) Analyzed: 1.00 Liter(s)

Date Collected: 5/26/17
Date Received: 5/30/17
Date Analyzed: 5/31/17

Initial Pressure (psig): -3.10
Final Pressure (psig): 3.53
Canister Dilution Factor: 1.57

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Result</th>
<th>MRL</th>
<th>MDL</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.092</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.10</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.79</td>
<td>0.22</td>
<td>ND</td>
<td>0.12</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.17</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.18</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>m,p-Xylenes</td>
<td>ND</td>
<td>1.6</td>
<td>0.47</td>
<td>ND</td>
<td>0.36</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.076</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Styrene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.18</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>α-Xylene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.18</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.11</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Cumene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.16</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.16</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.16</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.16</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>0.79</td>
<td>0.17</td>
<td>ND</td>
<td>0.15</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.13</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.22</td>
<td>ND</td>
<td>0.13</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.24</td>
<td>ND</td>
<td>0.13</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.79</td>
<td>0.25</td>
<td>ND</td>
<td>0.11</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Naphthalene</td>
<td>ND</td>
<td>0.79</td>
<td>0.28</td>
<td>ND</td>
<td>0.15</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.79</td>
<td>0.22</td>
<td>ND</td>
<td>0.074</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-04
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Summa Canister
Container ID: AC01854
Date Collected: 5/26/17
Date Received: 5/30/17
Date Analyzed: 5/31/17
Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -3.31
Final Pressure (psig): 3.81

Canister Dilution Factor: 1.63

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppb/V</th>
<th>MRL ppb/V</th>
<th>MDL ppb/V</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>0.37</td>
<td>0.82</td>
<td>0.23</td>
<td>0.21</td>
<td>0.47</td>
<td>0.13</td>
<td>J</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>2.0</td>
<td>0.82</td>
<td>0.28</td>
<td>0.40</td>
<td>0.16</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>0.29</td>
<td>0.82</td>
<td>0.24</td>
<td>0.14</td>
<td>0.39</td>
<td>0.12</td>
<td>J</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>0.82</td>
<td>0.31</td>
<td>ND</td>
<td>0.12</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.32</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>0.82</td>
<td>0.36</td>
<td>ND</td>
<td>0.37</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.31</td>
<td>ND</td>
<td>0.21</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.31</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>4.9</td>
<td>8.2</td>
<td>1.3</td>
<td>2.1</td>
<td>3.4</td>
<td>0.53</td>
<td>J</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>1.0</td>
<td>0.82</td>
<td>0.28</td>
<td>0.19</td>
<td>0.15</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>ND</td>
<td>8.2</td>
<td>0.68</td>
<td>ND</td>
<td>3.3</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.21</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>0.42</td>
<td>0.82</td>
<td>0.28</td>
<td>0.12</td>
<td>0.23</td>
<td>0.080</td>
<td>J</td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoromethane (CFC 113)</td>
<td>0.43</td>
<td>0.82</td>
<td>0.28</td>
<td>0.056</td>
<td>0.11</td>
<td>0.036</td>
<td>J</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>8.2</td>
<td>0.24</td>
<td>ND</td>
<td>2.6</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.82</td>
<td>0.31</td>
<td>ND</td>
<td>0.21</td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.20</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.23</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>8.2</td>
<td>1.1</td>
<td>ND</td>
<td>2.3</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>0.79</td>
<td>8.2</td>
<td>0.34</td>
<td>0.27</td>
<td>2.8</td>
<td>0.12</td>
<td>J</td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.21</td>
<td>0.066</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-04
Client Project ID: Stony Hollow Landfill
Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Summa Canister
Volume(s) Analyzed: 1.00 Liter(s)
Container ID: AC01854

Initial Pressure (psig): -3.31
Final Pressure (psig): 3.81
Canister Dilution Factor: 1.63

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result (\mu g/m^3)</th>
<th>MRL (\mu g/m^3)</th>
<th>MDL (\mu g/m^3)</th>
<th>Result (ppbV)</th>
<th>MRL (ppbV)</th>
<th>MDL (ppbV)</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>2.7</td>
<td>1.6</td>
<td>0.57</td>
<td>0.75</td>
<td>0.45</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.23</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.17</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>0.49</td>
<td>0.82</td>
<td>0.33</td>
<td>0.17</td>
<td>0.28</td>
<td>0.11</td>
<td>J</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.20</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.15</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>0.63</td>
<td>0.82</td>
<td>0.26</td>
<td>0.20</td>
<td>0.26</td>
<td>0.082</td>
<td>J</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>0.35</td>
<td>0.82</td>
<td>0.24</td>
<td>0.055</td>
<td>0.13</td>
<td>0.039</td>
<td>J</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.6</td>
<td>0.47</td>
<td>ND</td>
<td>0.47</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.18</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.12</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>0.23</td>
<td>0.82</td>
<td>0.23</td>
<td>0.042</td>
<td>0.15</td>
<td>0.042</td>
<td>J</td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.23</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.82</td>
<td>0.28</td>
<td>ND</td>
<td>0.20</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.82</td>
<td>0.23</td>
<td>ND</td>
<td>0.18</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.20</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.18</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.15</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>1.1</td>
<td>0.82</td>
<td>0.28</td>
<td>0.28</td>
<td>0.22</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.20</td>
<td>0.064</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

- **Client:** Waste Management-Stony Hollow Landfill
- **Client Sample ID:** SHAA-S-04
- **Client Project ID:** Stony Hollow Landfill
- **Test Code:** EPA TO-15
- **Instrument ID:** Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
- **Analyst:** Lusine Hakobyan
- **Sample Type:** 6.0 L Summa Canister
- **Test Notes:**
- **Container ID:** AC01854

Initial Pressure (psig): -3.31 | Final Pressure (psig): 3.81

Canister Dilution Factor: 1.63

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.096</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.11</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.82</td>
<td>0.23</td>
<td>ND</td>
<td>0.12</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.18</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.19</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>017601-23-1</td>
<td>m,p-Xylenes</td>
<td>0.54</td>
<td>1.6</td>
<td>0.49</td>
<td>0.13</td>
<td>0.38</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.079</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.19</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.19</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.12</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.17</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.17</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.17</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.17</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>0.82</td>
<td>0.18</td>
<td>ND</td>
<td>0.16</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.14</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.23</td>
<td>ND</td>
<td>0.14</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.24</td>
<td>ND</td>
<td>0.14</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.82</td>
<td>0.26</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>0.34</td>
<td>0.82</td>
<td>0.29</td>
<td>0.065</td>
<td>0.16</td>
<td>0.056</td>
<td>J</td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.82</td>
<td>0.23</td>
<td>ND</td>
<td>0.076</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
RESULTS OF ANALYSIS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Method Blank
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P170531-MB

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975C/6890N/MS16
Date Collected: NA
Date Received: NA
Date Analyzed: 5/31/17
Analyzer: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 1.00 Liter(s)

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.29</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.10</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.24</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.072</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.20</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>0.50</td>
<td>0.22</td>
<td>ND</td>
<td>0.23</td>
<td>0.099</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.13</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.19</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>ND</td>
<td>5.0</td>
<td>0.77</td>
<td>ND</td>
<td>2.1</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.089</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>ND</td>
<td>5.0</td>
<td>0.42</td>
<td>ND</td>
<td>2.0</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.13</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.14</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.065</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>5.0</td>
<td>0.15</td>
<td>ND</td>
<td>1.6</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.19</td>
<td>ND</td>
<td>0.13</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.14</td>
<td>0.047</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>5.0</td>
<td>0.65</td>
<td>ND</td>
<td>1.4</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>ND</td>
<td>5.0</td>
<td>0.21</td>
<td>ND</td>
<td>1.7</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.13</td>
<td>0.040</td>
<td></td>
</tr>
</tbody>
</table>

Canister Dilution Factor: 1.00

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Client:
Waste Management-Stony Hollow Landfill

Client Sample ID:
Method Blank

Client Project ID:
Stony Hollow Landfill

Test Code:
EPA TO-15

Instrument ID:
Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst:
Lusine Hakobyan

Sample Type:
6.0 L Silonite Canister

Test Notes:

ALS Project ID:
P1702578

ALS Sample ID:
P170531-MB

Date Collected:
NA

Date Received:
NA

Date Analyzed:
5/31/17

Volume(s) Analyzed:
1.00 Liter(s)

Canister Dilution Factor: 1.00

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result $\mu g/m^3$</th>
<th>MRL $\mu g/m^3$</th>
<th>MDL $\mu g/m^3$</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>ND</td>
<td>1.0</td>
<td>0.35</td>
<td>ND</td>
<td>0.28</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.14</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.10</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>ND</td>
<td>0.50</td>
<td>0.20</td>
<td>ND</td>
<td>0.17</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.092</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.16</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.080</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>ND</td>
<td>1.0</td>
<td>0.29</td>
<td>ND</td>
<td>0.29</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.075</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.093</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.14</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.12</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>10061-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.11</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>10061-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.092</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>ND</td>
<td>0.50</td>
<td>0.17</td>
<td>ND</td>
<td>0.13</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.039</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Page 3 of 3

Client: Waste Management-Stony Hollow Landfill

Client Sample ID: Method Blank

Client Project ID: Stony Hollow Landfill

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16

Analyst: Lusine Hakobyan

Sample Type: 6.0 L Silonite Canister

Test Notes:

ALS Project ID: PI702578

ALS Sample ID: PI70531-MB

Date Collected: NA

Date Received: NA

Date Analyzed: 5/31/17

Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Result µg/m³</th>
<th>MRL µg/m³</th>
<th>MDL µg/m³</th>
<th>Result ppbV</th>
<th>MRL ppbV</th>
<th>MDL ppbV</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.059</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.065</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.074</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.11</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.12</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>ND</td>
<td>1.0</td>
<td>0.30</td>
<td>ND</td>
<td>0.23</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.048</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.12</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.073</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.10</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.10</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.10</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.10</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>0.50</td>
<td>0.11</td>
<td>ND</td>
<td>0.097</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.083</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.083</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.15</td>
<td>ND</td>
<td>0.083</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>0.50</td>
<td>0.16</td>
<td>ND</td>
<td>0.067</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>ND</td>
<td>0.50</td>
<td>0.18</td>
<td>ND</td>
<td>0.095</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>0.50</td>
<td>0.14</td>
<td>ND</td>
<td>0.047</td>
<td>0.013</td>
<td></td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.
Client: Waste Management-Stony Hollow Landfill
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Silonite Canister(s) / 6.0 L Summa Canister(s)
Date(s) Collected: 5/26/17
Date(s) Received: 5/30/17
Date(s) Analyzed: 5/31/17

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>ALS Sample ID</th>
<th>1,2-Dichloroethane-d4</th>
<th>Toluene-d8</th>
<th>Bromofluorobenzene</th>
<th>Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Blank</td>
<td>P170531-MB</td>
<td>88</td>
<td>102</td>
<td>101</td>
<td>70-130</td>
<td></td>
</tr>
<tr>
<td>Lab Control Sample</td>
<td>P170531-LCS</td>
<td>86</td>
<td>101</td>
<td>102</td>
<td>70-130</td>
<td></td>
</tr>
<tr>
<td>SHAA-N-04</td>
<td>P1702578-001</td>
<td>88</td>
<td>101</td>
<td>102</td>
<td>70-130</td>
<td></td>
</tr>
<tr>
<td>SHAA-S-04</td>
<td>P1702578-002</td>
<td>88</td>
<td>101</td>
<td>101</td>
<td>70-130</td>
<td></td>
</tr>
<tr>
<td>SHAA-S-04</td>
<td>P1702578-002DP</td>
<td>88</td>
<td>101</td>
<td>102</td>
<td>70-130</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.
Laboratory Control Sample Summary

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P170531-LCS

Test Code: EPA TO-15
Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Date Received: NA
Analyzer: Lusine Hakobyany
Date Analyzed: 5/31/17
Sample Type: 6.0 L Silonite Canister
Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount µg/m³</th>
<th>Result µg/m³</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>115-07-1</td>
<td>Propene</td>
<td>210</td>
<td>186</td>
<td>89</td>
<td>52-127</td>
<td></td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>210</td>
<td>165</td>
<td>79</td>
<td>68-109</td>
<td></td>
</tr>
<tr>
<td>74-87-3</td>
<td>Chloromethane</td>
<td>210</td>
<td>177</td>
<td>84</td>
<td>51-130</td>
<td></td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>211</td>
<td>167</td>
<td>79</td>
<td>66-114</td>
<td></td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl Chloride</td>
<td>210</td>
<td>183</td>
<td>87</td>
<td>61-125</td>
<td></td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
<td>210</td>
<td>174</td>
<td>83</td>
<td>62-144</td>
<td></td>
</tr>
<tr>
<td>74-83-9</td>
<td>Bromomethane</td>
<td>210</td>
<td>172</td>
<td>82</td>
<td>73-123</td>
<td></td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
<td>210</td>
<td>202</td>
<td>96</td>
<td>69-122</td>
<td></td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
<td>1,060</td>
<td>947</td>
<td>89</td>
<td>57-117</td>
<td></td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (CFC 11)</td>
<td>210</td>
<td>166</td>
<td>79</td>
<td>63-98</td>
<td></td>
</tr>
<tr>
<td>67-63-0</td>
<td>2-Propanol (isopropyl Alcohol)</td>
<td>424</td>
<td>356</td>
<td>84</td>
<td>66-121</td>
<td></td>
</tr>
<tr>
<td>75-35-4</td>
<td>1,1-Dichloroethene</td>
<td>213</td>
<td>190</td>
<td>89</td>
<td>76-118</td>
<td></td>
</tr>
<tr>
<td>75-09-2</td>
<td>Methylene Chloride</td>
<td>212</td>
<td>192</td>
<td>91</td>
<td>60-118</td>
<td></td>
</tr>
<tr>
<td>76-13-1</td>
<td>Trichlorotrifluoroethane (CFC 113)</td>
<td>212</td>
<td>181</td>
<td>85</td>
<td>73-114</td>
<td></td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon Disulfide</td>
<td>213</td>
<td>199</td>
<td>93</td>
<td>57-102</td>
<td></td>
</tr>
<tr>
<td>156-60-5</td>
<td>trans-1,2-Dichloroethene</td>
<td>213</td>
<td>194</td>
<td>91</td>
<td>74-123</td>
<td></td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
<td>212</td>
<td>190</td>
<td>90</td>
<td>69-111</td>
<td></td>
</tr>
<tr>
<td>1634-04-4</td>
<td>Methyl tert-Butyl Ether</td>
<td>213</td>
<td>183</td>
<td>86</td>
<td>69-113</td>
<td></td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl Acetate</td>
<td>1,060</td>
<td>1050</td>
<td>99</td>
<td>76-128</td>
<td></td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone (MEK)</td>
<td>212</td>
<td>194</td>
<td>92</td>
<td>63-127</td>
<td></td>
</tr>
<tr>
<td>156-59-2</td>
<td>cis-1,2-Dichloroethene</td>
<td>212</td>
<td>187</td>
<td>88</td>
<td>72-117</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount µg/m³</th>
<th>Result µg/m³</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>141-78-6</td>
<td>Ethyl Acetate</td>
<td>426</td>
<td>404</td>
<td>95</td>
<td>68-127</td>
<td></td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
<td>213</td>
<td>193</td>
<td>91</td>
<td>55-116</td>
<td></td>
</tr>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
<td>212</td>
<td>175</td>
<td>83</td>
<td>70-109</td>
<td></td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran (THF)</td>
<td>213</td>
<td>185</td>
<td>87</td>
<td>72-113</td>
<td></td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
<td>212</td>
<td>159</td>
<td>75</td>
<td>69-113</td>
<td></td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
<td>212</td>
<td>165</td>
<td>78</td>
<td>72-115</td>
<td></td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
<td>212</td>
<td>182</td>
<td>86</td>
<td>65-107</td>
<td></td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon Tetrachloride</td>
<td>213</td>
<td>159</td>
<td>75</td>
<td>71-113</td>
<td></td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
<td>425</td>
<td>386</td>
<td>91</td>
<td>71-115</td>
<td></td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
<td>212</td>
<td>197</td>
<td>93</td>
<td>71-115</td>
<td></td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
<td>214</td>
<td>176</td>
<td>82</td>
<td>75-118</td>
<td></td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethene</td>
<td>212</td>
<td>183</td>
<td>86</td>
<td>68-114</td>
<td></td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
<td>213</td>
<td>194</td>
<td>91</td>
<td>81-131</td>
<td></td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
<td>213</td>
<td>193</td>
<td>91</td>
<td>68-116</td>
<td></td>
</tr>
<tr>
<td>10051-01-5</td>
<td>cis-1,3-Dichloropropene</td>
<td>210</td>
<td>192</td>
<td>91</td>
<td>77-126</td>
<td></td>
</tr>
<tr>
<td>108-10-1</td>
<td>4-Methyl-2-pentanone</td>
<td>213</td>
<td>195</td>
<td>92</td>
<td>69-126</td>
<td></td>
</tr>
<tr>
<td>10051-02-6</td>
<td>trans-1,3-Dichloropropene</td>
<td>213</td>
<td>192</td>
<td>90</td>
<td>79-125</td>
<td></td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
<td>212</td>
<td>190</td>
<td>90</td>
<td>75-119</td>
<td></td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene</td>
<td>212</td>
<td>189</td>
<td>89</td>
<td>59-118</td>
<td></td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
<td>213</td>
<td>172</td>
<td>81</td>
<td>69-129</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
Laboratory Control Sample Summary

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: Lab Control Sample
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P170531-LCS

<table>
<thead>
<tr>
<th>CAS #</th>
<th>Compound</th>
<th>Spike Amount μg/m³</th>
<th>Result μg/m³</th>
<th>% Recovery</th>
<th>ALS Acceptance Limits</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>124-48-1</td>
<td>Dibromochloromethane</td>
<td>213</td>
<td>175</td>
<td>82</td>
<td>74-136</td>
<td></td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
<td>212</td>
<td>187</td>
<td>88</td>
<td>73-131</td>
<td></td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethene</td>
<td>213</td>
<td>181</td>
<td>85</td>
<td>65-130</td>
<td></td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
<td>212</td>
<td>186</td>
<td>88</td>
<td>68-120</td>
<td></td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
<td>212</td>
<td>181</td>
<td>85</td>
<td>68-122</td>
<td></td>
</tr>
<tr>
<td>179601-23-1</td>
<td>m,p-Xylenes</td>
<td>424</td>
<td>351</td>
<td>83</td>
<td>68-123</td>
<td></td>
</tr>
<tr>
<td>75-25-2</td>
<td>Bromoform</td>
<td>212</td>
<td>176</td>
<td>83</td>
<td>69-130</td>
<td></td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
<td>212</td>
<td>193</td>
<td>91</td>
<td>71-133</td>
<td></td>
</tr>
<tr>
<td>95-47-6</td>
<td>o-Xylene</td>
<td>212</td>
<td>176</td>
<td>83</td>
<td>68-122</td>
<td></td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>212</td>
<td>189</td>
<td>89</td>
<td>69-130</td>
<td></td>
</tr>
<tr>
<td>98-82-8</td>
<td>Cumene</td>
<td>212</td>
<td>179</td>
<td>84</td>
<td>70-123</td>
<td></td>
</tr>
<tr>
<td>622-96-8</td>
<td>4-Ethyltoluene</td>
<td>212</td>
<td>181</td>
<td>85</td>
<td>67-130</td>
<td></td>
</tr>
<tr>
<td>108-67-8</td>
<td>1,3,5-Trimethylbenzene</td>
<td>212</td>
<td>174</td>
<td>82</td>
<td>67-124</td>
<td></td>
</tr>
<tr>
<td>95-63-6</td>
<td>1,2,4-Trimethylbenzene</td>
<td>212</td>
<td>172</td>
<td>81</td>
<td>67-129</td>
<td></td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl Chloride</td>
<td>212</td>
<td>186</td>
<td>88</td>
<td>79-138</td>
<td></td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>212</td>
<td>183</td>
<td>86</td>
<td>65-136</td>
<td></td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>213</td>
<td>185</td>
<td>87</td>
<td>66-141</td>
<td></td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>212</td>
<td>183</td>
<td>86</td>
<td>67-136</td>
<td></td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
<td>212</td>
<td>198</td>
<td>93</td>
<td>64-134</td>
<td></td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
<td>214</td>
<td>211</td>
<td>99</td>
<td>62-136</td>
<td></td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachlorobutadiene</td>
<td>213</td>
<td>179</td>
<td>84</td>
<td>60-133</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate</th>
<th>Average</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample Result</td>
<td>Sample Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>µg/m³</td>
<td>µg/m³</td>
<td></td>
<td>µg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppbV</td>
<td>ppbV</td>
<td></td>
<td>µg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propene</td>
<td>0.365</td>
<td>0.212</td>
<td>0.388</td>
<td>0.225</td>
<td>0.3765</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Dichlorodifluoromethane (CFC 12)</td>
<td>1.99</td>
<td>0.402</td>
<td>1.99</td>
<td>0.402</td>
<td>1.99</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.285</td>
<td>0.138</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Acetone</td>
<td>4.94</td>
<td>2.08</td>
<td>4.90</td>
<td>2.06</td>
<td>4.92</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.04</td>
<td>0.185</td>
<td>1.03</td>
<td>0.183</td>
<td>1.035</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2-Propanol (Isopropyl Alcohol)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>0.421</td>
<td>0.121</td>
<td>0.429</td>
<td>0.123</td>
<td>0.425</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Trichlorotrifluoroethane</td>
<td>0.429</td>
<td>0.0560</td>
<td>0.437</td>
<td>0.0570</td>
<td>0.433</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Methyl tert-Butyl Ether</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>0.787</td>
<td>0.267</td>
<td>0.755</td>
<td>0.256</td>
<td>0.771</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
LABORATORY DUPLICATE SUMMARY RESULTS

Client: Waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-94
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P1702578-002DUP
Test Code: EPA TO-15
Date Collected: 5/26/17
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Date Received: 5/30/17
Analyst: Lusine Hakobyan
Date Analyzed: 5/31/17
Sample Type: 6.0 L Summa Canister
Volume(s) Analyzed: 1.00 L
Container ID: AC01854

Initial Pressure (psig): -3.31
Final Pressure (psig): 3.81
Canister Dilution Factor: 1.63

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate Result</th>
<th>Average</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl Acetate</td>
<td>2.71</td>
<td>0.753</td>
<td>2.73</td>
<td>0.758</td>
<td>0.7</td>
<td>25</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF)</td>
<td>0.492</td>
<td>0.167</td>
<td>0.481</td>
<td>0.163</td>
<td>0.4865</td>
<td>25</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.632</td>
<td>0.198</td>
<td>0.619</td>
<td>0.194</td>
<td>0.625</td>
<td>25</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.346</td>
<td>0.0550</td>
<td>0.349</td>
<td>0.0555</td>
<td>0.3475</td>
<td>25</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.228</td>
<td>0.0425</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n-Heptane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.05</td>
<td>0.280</td>
<td>1.04</td>
<td>0.276</td>
<td>1.045</td>
<td>25</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
LABORATORY DUPLICATE SUMMARY RESULTS

Client: waste Management-Stony Hollow Landfill
Client Sample ID: SHAA-S-94
Client Project ID: Stony Hollow Landfill
ALS Project ID: P1702578
ALS Sample ID: P1702578-002DUP

Test Code: EPA TO-15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Cinert/6890N/MS16
Analyst: Lusine Hakobyan
Sample Type: 6.0 L Summa Canister
Volume(s) Analyzed: 1.00 Lliter(s)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample Result</th>
<th>Duplicate Sample Result</th>
<th>Average</th>
<th>% RPD</th>
<th>RPD Limit</th>
<th>Data Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/m³</td>
<td>ppbV</td>
<td>µg/m³</td>
<td>ppbV</td>
<td>µg/m³</td>
<td>% RPD</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>m,p-Xylenes</td>
<td>0.543</td>
<td>0.125</td>
<td>0.541</td>
<td>0.125</td>
<td>0.542</td>
<td>0.4</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Styrene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Cumene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>4-Ethyltoluene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.342</td>
<td>0.0653</td>
<td>0.346</td>
<td>0.0659</td>
<td>0.344</td>
<td>1</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

ND = Compound was analyzed for, but not detected above the laboratory detection limit.
J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
02-Jun-2017

Alex Zelles
Waste Management
2460 S. Gettysburg Rd
Dayton, OH 45417

Tel: (937) 356-6204
Fax:

Re: Stony Hollow Landfill

Work Order: 17051017

Dear Alex,

ALS Environmental received 2 samples on 26-May-2017 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Laboratory Group. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 7.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Rob Nieman

Rob Nieman
Project Manager
Work Order Sample Summary

<table>
<thead>
<tr>
<th>Lab Samp ID</th>
<th>Client Sample ID</th>
<th>Matrix</th>
<th>Tag Number</th>
<th>Collection Date</th>
<th>Date Received</th>
<th>Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>17051017-01</td>
<td>SHAA-N-04</td>
<td>Air</td>
<td></td>
<td>5/25/2017</td>
<td>5/26/2017</td>
<td>☐</td>
</tr>
<tr>
<td>17051017-02</td>
<td>SHAA-S-04</td>
<td>Air</td>
<td></td>
<td>5/25/2017</td>
<td>5/26/2017</td>
<td>☐</td>
</tr>
</tbody>
</table>
The sample condition upon receipt was acceptable except where noted.

Results relate only to the items tested and are not blank corrected unless indicated.

Compound identification is based upon retention time matching only. Any compound with a similar retention time will interfere.

Samples were prepared and analyzed by the analytical method and the laboratory’s applicable standard operating procedure listed below:
- IH-001- "Determination of Analytes Using NIOSH and OSHA Methods Using Gas Chromatography."
- IH-002- "Determination of Suspended Particulates in the Atmosphere Using Various Media"
- IH-003- "Determination of Suspended Particulates Not Otherwise Regulated (Total and Respirable)."
- IH-004- "Determination of Analytes by NIOSH and OSHA Methods Using Liquid Chromatography."
- IH-005- "Benzene-Soluble Fraction and Total Particulate (Asphalt Fume)."
- IH-006- "Methods IO-3.1 and IO-3.4 Modified for Metals Preparation and Analysis for Suspended Particulates."
- IH-196- "Carbon Black by OSHA 196."
- IH-6009- "Determination of Mercury in Industrial Hygiene Samples by Manual Cold Vapor Atomic Absorption Spectroscopy."
- ENV-6010B- "Determination of Trace Metals in Solution by Inductively Coupled Plasma-Atomic Emission Spectroscopy by EPA Method 6010B Non-VAP."
- IH-7300 modified- "Elements by ICP."
ALS Environmental

Client: Waste Management
Project: Stony Hollow Landfill
Work Order: 17051017
Date: 02-Jun-17

Analytical Results

Lab ID: 17051017-01A
Collection Date: 5/25/2017
Client Sample ID: SHAA-N-04
Matrix: AIR

Analyses

ALDEHYDE(S) BY OSHA 1007 MOD.

<table>
<thead>
<tr>
<th></th>
<th>µg/sample</th>
<th>µg/sample</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Analyzed:</td>
<td>5/31/2017</td>
<td>16:31</td>
<td></td>
</tr>
<tr>
<td>Method:</td>
<td>O1007</td>
<td></td>
<td>1440</td>
</tr>
<tr>
<td>Time (Min):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0015</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0010</td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0013</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0022</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.099</td>
<td>0.090</td>
<td>0.0019</td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.16</td>
<td><0.0032</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0019</td>
</tr>
</tbody>
</table>

Lab ID: 17051017-02A
Collection Date: 5/25/2017
Client Sample ID: SHAA-S-04
Matrix: AIR

Analyses

ALDEHYDE(S) BY OSHA 1007 MOD.

<table>
<thead>
<tr>
<th></th>
<th>µg/sample</th>
<th>µg/sample</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Analyzed:</td>
<td>5/31/2017</td>
<td>16:31</td>
<td></td>
</tr>
<tr>
<td>Method:</td>
<td>O1007</td>
<td></td>
<td>1440</td>
</tr>
<tr>
<td>Time (Min):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0015</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0010</td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0013</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0022</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.13</td>
<td>0.090</td>
<td>0.0025</td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.16</td>
<td><0.0032</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td><0.0019</td>
</tr>
</tbody>
</table>

Note:
QC BATCH REPORT

Client: Waste Management
Work Order: 17051017
Project: Stony Hollow Landfill
Date: 02-Jun-17

Batch ID: 43489
Instrument ID: HPLC2
Method: 01007

MBLK

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>ND</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>ND</td>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>1.501</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>100</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>1.53</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>102</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>1.331</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>88.8</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>1.518</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>101</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1.480</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>99</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>2.765</td>
<td>0.090</td>
<td>3</td>
<td>0</td>
<td>92.2</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>1.359</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>90.6</td>
<td>70-130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCSD

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>PQL</th>
<th>SPK Val</th>
<th>SPK Ref Value</th>
<th>%REC</th>
<th>Control Limit</th>
<th>RPD Ref Value</th>
<th>%RPD</th>
<th>RPD Limit</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>1.512</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>101</td>
<td>70-130</td>
<td>1.501</td>
<td>0.724</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>1.508</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>100</td>
<td>70-130</td>
<td>1.53</td>
<td>1.49</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Butyraldehyde</td>
<td>1.315</td>
<td>0.046</td>
<td>1.5</td>
<td>0</td>
<td>87.7</td>
<td>70-130</td>
<td>1.331</td>
<td>1.22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>1.503</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>100</td>
<td>70-130</td>
<td>1.518</td>
<td>0.98</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1.469</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>97.9</td>
<td>70-130</td>
<td>1.486</td>
<td>1.14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Hexanaldehyde</td>
<td>2.765</td>
<td>0.090</td>
<td>3</td>
<td>0</td>
<td>92.2</td>
<td>70-130</td>
<td>2.765</td>
<td>0.0108</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>1.342</td>
<td>0.045</td>
<td>1.5</td>
<td>0</td>
<td>89.5</td>
<td>70-130</td>
<td>1.359</td>
<td>1.23</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The following samples were analyzed in this batch: 17051017-01A 17051017-02A

Note: See Qualifiers Page for a list of Qualifiers and their explanation.
ALS Environmental

Client: Waste Management

Project: Stony Hollow Landfill

WorkOrder: 17051017

QUALIFIERS, ACRONYMS, UNITS

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Value exceeds Regulatory Limit</td>
</tr>
<tr>
<td>A</td>
<td>Not accredited</td>
</tr>
<tr>
<td>B</td>
<td>Analyte detected in the associated Method Blank above the Reporting Limit</td>
</tr>
<tr>
<td>E</td>
<td>Value above quantitation range</td>
</tr>
<tr>
<td>H</td>
<td>Analyzed outside of Holding Time</td>
</tr>
<tr>
<td>J</td>
<td>Analyte detected below quantitation limit</td>
</tr>
<tr>
<td>N</td>
<td>Not offered for accreditation</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected at the Reporting Limit</td>
</tr>
<tr>
<td>O</td>
<td>Sample amount is > 4 times amount spiked</td>
</tr>
<tr>
<td>P</td>
<td>Dual Column results percent difference > 40%</td>
</tr>
<tr>
<td>R</td>
<td>RPD above laboratory control limit</td>
</tr>
<tr>
<td>S</td>
<td>Spike Recovery outside laboratory control limits</td>
</tr>
<tr>
<td>U</td>
<td>Analyzed but not detected above the MDL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUP</td>
<td>Method Duplicate</td>
</tr>
<tr>
<td>E</td>
<td>EPA Method</td>
</tr>
<tr>
<td>LCS</td>
<td>Laboratory Control Sample</td>
</tr>
<tr>
<td>LCSD</td>
<td>Laboratory Control Sample Duplicate</td>
</tr>
<tr>
<td>MBLK</td>
<td>Method Blank</td>
</tr>
<tr>
<td>MDL</td>
<td>Method Detection Limit</td>
</tr>
<tr>
<td>MQL</td>
<td>Method Quantitation Limit</td>
</tr>
<tr>
<td>MS</td>
<td>Matrix Spike</td>
</tr>
<tr>
<td>MSD</td>
<td>Matrix Spike Duplicate</td>
</tr>
<tr>
<td>PDS</td>
<td>Post Digestion Spike</td>
</tr>
<tr>
<td>PQL</td>
<td>Practical Quantitation Limit</td>
</tr>
<tr>
<td>SDL</td>
<td>Sample Detection Limit</td>
</tr>
<tr>
<td>SW</td>
<td>SW-846 Method</td>
</tr>
</tbody>
</table>

Units Reported

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/sample</td>
<td></td>
</tr>
</tbody>
</table>
Sample Receipt Checklist

Client Name: STONYHOLLOWLANDFILL-DAY Date/Time Received: 26-May-17 00:00
Work Order: 17051017 Received by: SNH

Checklist completed by: Shawn Smythe Date: 27-May-17 Reviewed by: Rob Nieman Date: 01-Jun-17

eSignature eSignature

Matrices:
Carrier name: Courier

Shipping container/cooler in good condition? Yes ☑ No ☐ Not Present ☐
Custody seals intact on shipping container/cooler? Yes ☐ No ☐ Not Present ☑
Custody seals intact on sample bottles? Yes ☑ No ☐ Not Present ☑
Chain of custody present? Yes ☑ No ☐
Chain of custody signed when relinquished and received? Yes ☑ No ☐
Chain of custody agrees with sample labels? Yes ☑ No ☐
Samples in proper container/bottle? Yes ☑ No ☐
Sample containers intact? Yes ☑ No ☐
Sufficient sample volume for indicated test? Yes ☑ No ☐
All samples received within holding time? Yes ☑ No ☐
Container/Temp Blank temperature in compliance? Yes ☑ No ☐

Temperature(s)/Thermometer(s):

Cooler(s)/Kit(s):

Water - VOA vials have zero headspace? Yes ☐ No ☐ No VOA vials submitted ☑
Water - pH acceptable upon receipt? Yes ☐ No ☐ N/A ☑

pH adjusted? Yes ☐ No ☐ N/A ☑
pH adjusted by: __________________________

Login Notes: __________________________

Client Contacted: Date Contacted: Person Contacted:
Contacted By: Regarding:

Comments: __________________________

CorrectiveAction: __________________________

SRC Page 1 of 1
ANALYTICAL SERVICES REQUEST AND CHAIN OF CUSTODY

Contact Information
- **Send to LJB:**
 - Invoice: []
 - Results: []
- **Contact:** Alex Zelles
- **Address/Email:** azelles@ljinc.com
- **Address:** 2500 Newmark Drive
 - **City:** Miamisburg
 - **State:** OH
 - **Zip Code:** 45342
- **Phone:** 937-259-5022 or 630-632-5859
- **Fax:**

Sample Information
- **Sample site:** Stony Hollow Landfill
- **Sampled by:** Alex Zelles
- **Signature:**
 - [] Ruah
 - [] Phone results
 - [] Standard turnaround
 - [x] Fax results
 - [x] Email results
 - **Need by:** 3-day turnaround

Analysis Requested

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Date</th>
<th>Time</th>
<th>Matrix</th>
<th>Comp</th>
<th>Grab</th>
<th># Blts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMM-A-S-04</td>
<td>5/25/17</td>
<td>18:49-</td>
<td>Air</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

ALS LAB USE ONLY

- **Cooler Temp:** 5.4°C
- **pH Adjustments:**
 - COOLER: None
 - WET ICE: None
 - DRY ICE: None
 - ICE PACK: None

Relinquished by
- **5/20/17 10:52:** Alex Zelles
- **5/16/17 14:52:** Alex Zelles
- **5/14/17 15:52:** Alex Zelles

Date/Time:
- **Received by:**
 - 5/20/17 11:0
- **Date/time:**
 - **5/20/17 15:44**